鲁滨逊归结原理python代码实现
时间: 2024-04-18 21:22:11 浏览: 157
鲁滨逊归结原理是一种用于判断逻辑命题公式可满足性的方法。下面是一个简单的Python代码实现鲁滨逊归结原理的示例:
```python
# 定义一个函数,用于判断两个子句是否可以进行归结
def can_resolve(clause1, clause2):
for literal in clause1:
if literal == 'not':
neg_literal = literal[2:]
else:
neg_literal = 'not' + literal
if neg_literal in clause2:
return True
return False
# 定义一个函数,用于进行归结操作
def resolve(clause1, clause2):
new_clause = []
for literal in clause1:
if literal == 'not':
neg_literal = literal[2:]
else:
neg_literal = 'not' + literal
if neg_literal not in clause2:
new_clause.append(literal)
for literal in clause2:
if literal == 'not':
neg_literal = literal[2:]
else:
neg_literal = 'not' + literal
if neg_literal not in clause1:
new_clause.append(literal)
return new_clause
# 定义一个函数,用于判断逻辑命题公式是否可满足
def is_satisfiable(clauses):
while True:
new_clauses = []
n = len(clauses)
for i in range(n):
for j in range(i+1, n):
if can_resolve(clauses[i], clauses[j]):
resolvent = resolve(clauses[i], clauses[j])
if len(resolvent) == 0:
return True
if resolvent not in new_clauses:
new_clauses.append(resolvent)
if len(new_clauses) == 0:
return False
clauses += new_clauses
# 测试代码
clauses = [['not', 'P', 'Q'], ['P'], ['Q']]
print(is_satisfiable(clauses))
```
上述代码实现了鲁滨逊归结原理的基本逻辑,通过判断两个子句是否可以进行归结,并进行归结操作,最终判断逻辑命题公式是否可满足。在测试代码中,我们定义了一个包含三个子句的逻辑命题公式,通过调用`is_satisfiable`函数来判断其可满足性。
阅读全文