ModuleNotFoundError: No module named 'sklearn.neighbor

时间: 2023-10-29 17:00:37 浏览: 41
ModuleNotFoundError: No module named 'sklearn.neighbors'是一个常见的错误,它通常发生在与scikit-learn(sklearn)相关的项目中。根据你提供的引用内容,我可以给出以下解决方案: 1. 首先,该问题的原因是在sklearn 0.22.1版本中,sklearn.neighbors.base模块的名称被修改为sklearn.neighbors._base。 2. 有两种解决方法可以尝试: a. 安装早于0.22.1版本的scikit-learn(sklearn)。你可以使用以下命令安装特定版本的sklearn:`pip install scikit-learn==0.22.1`。 b. 如果你不想重新安装scikit-learn,你可以尝试在代码中添加以下代码片段来解决问题: ```python import sklearn.neighbors._base import sys sys.modules['sklearn.neighbors.base'] = sklearn.neighbors._base ``` 这段代码的作用是将sklearn.neighbors._base模块映射到sklearn.neighbors.base模块。 这样,当你的代码尝试导入sklearn.neighbors.base时,它将引用sklearn.neighbors._base并顺利运行。 请注意,在使用第二种方法时,你可能需要在导入sklearn.neighbors之前添加上面的代码片段。 希望这些解决方案能够帮助你解决ModuleNotFoundError: No module named 'sklearn.neighbors'的问题。 如果你还有其他问题,请随时提问。

相关推荐

from pythonds.basic import Queue class Vertex: def __init__(self,key): self.id = key self.connectedTo = {} def addNeighbor(self,nbr,weight=0): self.connectedTo[nbr] = weight def __str__(self): return str(self.id) + ' connectedTo: ' + str([x.id for x in self.connectedTo]) def getConnections(self): return self.connectedTo.keys() def getId(self): return self.id def getWeight(self,nbr): return self.connectedTo[nbr] class Graph: def __init__(self): self.vertList = {} self.numVertices = 0 def addVertex(self,key): self.numVertices = self.numVertices + 1 newVertex = Vertex(key) self.vertList[key] = newVertex return newVertex def getVertex(self,n): if n in self.vertList: return self.vertList[n] else: return None def __contains__(self,n): return n in self.vertList def addEdge(self,f,t,cost=0): if f not in self.vertList: nv = self.addVertex(f) if t not in self.vertList: nv = self.addVertex(t) self.vertList[f].addNeighbor(self.vertList[t], cost) def getVertices(self): return self.vertList.keys() def __iter__(self): return iter(self.vertList.values()) def bfs(g,start): start.setDistance(0) start.setPred(None) vertQueue=Queue() vertQueue.enqueue(start) while (vertQueue.size()>0): currentVert=vertQueue.dequeue() for nbr in currentVert.getConnections(): if (nbr.getColor()=='White'): nbr.setColor('gray') nbr.setDistance(currentVert.getDistance()+1) nbr.setPred(currentVert) vertQueue.enqueue(nbr) currentVert.setColor('black') List=["""1:A,2:B,3:C,4:D,5:E,6:F"""] g=Graph() for i in range(6): g.addVertex(i) g.addEdge(1,2,7) g.addEdge(2,1,2) g.addEdge(1,3,5) g.addEdge(1,6,1) g.addEdge(2,4,7) g.addEdge(2,5,3) g.addEdge(3,2,2) g.addEdge(3,6,8) g.addEdge(4,1,1) g.addEdge(4,5,2) g.addEdge(4,6,4) g.addEdge(5,1,6) g.addEdge(5,4,5) g.addEdge(6,2,1) g.addEdge(6,5,8) bfs(g,)优化这段代码

import pandas as pd import numpy as np import networkx as nx import matplotlib.pyplot as plt # 读取Excel文件中的邻接矩阵 adjacency_matrix = pd.read_excel('output.xlsx', index_col=0) # 将邻接矩阵转换为numpy数组 adjacency_matrix = adjacency_matrix.to_numpy() # 创建有向图对象 G = nx.DiGraph(adjacency_matrix) def preprocess(G): p = 0 directedGraph = nx.DiGraph() for u in G.nodes(): for v in G.neighbors(u): if (v != u): propProb = G.number_of_edges(u, v) / G.degree(v) directedGraph.add_edge(u, v, pp=propProb) return directedGraph def simulate(G, seedNode, propProbability): newActive = True currentActiveNodes = seedNode.copy() newActiveNodes = set() activatedNodes = seedNode.copy() influenceSpread = len(seedNode) while newActive: for node in currentActiveNodes: for neighbor in G.neighbors(node): if neighbor not in activatedNodes: if G[node][neighbor]['pp'] > propProbability: newActiveNodes.add(neighbor) activatedNodes.append(neighbor) influenceSpread += len(newActiveNodes) if newActiveNodes: currentActiveNodes = list(newActiveNodes) newActiveNodes = set() else: newActive = False return influenceSpread def flipCoin(probability): return np.random.random() < probability # 可视化传播过程 def visualizePropagation(G, seedNode, propProbability): pos = nx.spring_layout(G) # 选择布局算法 labels = {node: node for node in G.nodes()} # 节点标签为节点名 colors = ['r' if node in seedNode else 'b' for node in G.nodes()] # 种子节点为红色,其他节点为蓝色 plt.figure(figsize=(10,6)) nx.draw_networkx_nodes(G, pos, node_color=colors) nx.draw_networkx_edges(G, pos) nx.draw_networkx_labels(G, pos, labels) plt.title('Propagation Visualization') plt.show() # 示例用法 seedNode = [7,36,17] propProbability = 0.7 directedGraph = preprocess(G) influenceSpread = simulate(directedGraph, seedNode, propProbability) print("Influence Spread:", influenceSpread) visualizePropagation(directedGraph, seedNode, propProbability)修改这个代码使得输出图形节点之间间隔合理能够看清

from pythonds.graphs import PriorityQueue import sys class Vertex: def __init__(self, key): self.id = key self.connectedTo = {} self.dis = sys.maxsize self.pred = None def addNeighbor(self, nbr, weight=0): self.connectedTo[nbr] = weight def setDistance(self, distance): self.dis = distance def getDistance(self): return self.dis def getConnections(self): return self.connectedTo.keys() def getWeight(self, nbr): return self.connectedTo[nbr] def setPred(self, p): self.pred = p class Graph: def __init__(self): self.vertList = {} self.numVertices = 0 def addVertex(self, key): self.numVertices = self.numVertices + 1 newVertex = Vertex(key) self.vertList[key] = newVertex return newVertex def getVertex(self, n): if n in self.vertList: return self.vertList[n] else: return None def __contains__(self, n): return n in self.vertList def addEdge(self, f, t, cost=0): if f not in self.vertList: nv = self.addVertex(f) if t not in self.vertList: nv = self.addVertex(t) self.vertList[f].addNeighbor(self.vertList[t], cost) def getVertices(self): return self.vertList.keys() def __iter__(self): return iter(self.vertList.values()) def dijkstra(aGraph, start): pq = PriorityQueue() start.setDistance(0) pq.buildHeap([(v.getDistance(), v) for v in aGraph]) while not pq.isEmpty(): currentVert = pq.delMin() for nextVert in currentVert.getConnections(): newDist = currentVert.getDistance() + currentVert.getWeight(nextVert) if newDist < nextVert.getDistance(): nextVert.setDistance(newDist) nextVert.setPred(currentVert) pq.decreaseKey(nextVert, newDist) aGraph = Graph() aGraph.addEdge('1', '2', 2) aGraph.addEdge('1', '3', 1) aGraph.addEdge('1', '4', 5) aGraph.addEdge('1', '2', 2) aGraph.addEdge('3', '2', 2) aGraph.addEdge('3', '4', 3) aGraph.addEdge('2', '4', 3) aGraph.addEdge('3', '5', 1) aGraph.addEdge('5', '4', 1) aGraph.addEdge('5', '6', 1) aGraph.addEdge('4', '6', 5) n = input("请输入初始结点:") start = aGraph.getVertex(n) while True: operation = input("1.查询结点 2.退出程序") if operation == "1": m = input("请输入结点,查询该结点距离初始结点的最近的距离:") node = aGraph.getVertex(m) dijkstra(aGraph, start) print(node.getDistance()) elif operation == "2": break 分析代码

import pandas as pd import numpy as np import networkx as nx # 读取Excel文件中的邻接矩阵 adjacency_matrix = pd.read_excel('output.xlsx', index_col=0) # 将邻接矩阵转换为numpy数组 adjacency_matrix = adjacency_matrix.to_numpy() # 创建有向图对象 G = nx.DiGraph(adjacency_matrix) def preprocess(G): p = 0 directedGraph = nx.DiGraph() for u in G.nodes(): for v in G.neighbors(u): if (v != u): # propProb = G.number_of_edges(u, v) / G.in_degree(v) propProb = G.number_of_edges(u, v) / G.degree(v) directedGraph.add_edge(u, v, pp=propProb) # p += propProb # print(propProb) # print('平均阈值:', p/2939) return directedGraph def simulate(G, seedNode, propProbability): newActive = True currentActiveNodes = copy.deepcopy(seedNode) newActiveNodes = set() activatedNodes = copy.deepcopy(seedNode) # Biar ga keaktivasi 2 kali influenceSpread = len(seedNode) while (newActive): for node in currentActiveNodes: for neighbor in G.neighbors( node): # Harus dicek udah aktif apa belom, jangan sampe ngaktifin yang udah aktif if (neighbor not in activatedNodes): if (G[node][neighbor]['pp'] > propProbability): # flipCoin(propProbability) newActiveNodes.add(neighbor) activatedNodes.append(neighbor) influenceSpread += len(newActiveNodes) if newActiveNodes: currentActiveNodes = list(newActiveNodes) newActiveNodes = set() else: newActive = False # print("activatedNodes",len(activatedNodes),activatedNodes) return influenceSpread def flipCoin(probability): return random.random() < probability解释一下这个代码

最新推荐

recommend-type

shufflenet模型-CNN图像分类识别球类运动分类-不含数据集图片-含逐行注释和说明文档.zip

shufflenet模型_CNN图像分类识别球类运动分类-不含数据集图片-含逐行注释和说明文档 本代码是基于python pytorch环境安装的。 下载本代码后,有个环境安装的requirement.txt文本 如果有环境安装不会的,可自行网上搜索如何安装python和pytorch,这些环境安装都是有很多教程的,简单的 环境需要自行安装,推荐安装anaconda然后再里面推荐安装python3.7或3.8的版本,pytorch推荐安装1.7.1或1.8.1版本 首先是代码的整体介绍 总共是3个py文件,十分的简便 且代码里面的每一行都是含有中文注释的,小白也能看懂代码 然后是关于数据集的介绍。 本代码是不含数据集图片的,下载本代码后需要自行搜集图片放到对应的文件夹下即可 在数据集文件夹下是我们的各个类别,这个类别不是固定的,可自行创建文件夹增加分类数据集 需要我们往每个文件夹下搜集来图片放到对应文件夹下,每个对应的文件夹里面也有一张提示图,提示图片放的位置 然后我们需要将搜集来的图片,直接放到对应的文件夹下,就可以对代码进行训练了。 运行01生成txt.py,
recommend-type

半年工作经验和一年工作经验是有本质区别的.pdf

半年工作经验和一年工作经验是有本质区别的
recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

深入了解MATLAB开根号的最新研究和应用:获取开根号领域的最新动态

![matlab开根号](https://www.mathworks.com/discovery/image-segmentation/_jcr_content/mainParsys3/discoverysubsection_1185333930/mainParsys3/image_copy.adapt.full.medium.jpg/1712813808277.jpg) # 1. MATLAB开根号的理论基础 开根号运算在数学和科学计算中无处不在。在MATLAB中,开根号可以通过多种函数实现,包括`sqrt()`和`nthroot()`。`sqrt()`函数用于计算正实数的平方根,而`nt
recommend-type

react的函数组件的使用

React 的函数组件是一种简单的组件类型,用于定义无状态或者只读组件。 它们通常接受一个 props 对象作为参数并返回一个 React 元素。 函数组件的优点是代码简洁、易于测试和重用,并且它们使 React 应用程序的性能更加出色。 您可以使用函数组件来呈现简单的 UI 组件,例如按钮、菜单、标签或其他部件。 您还可以将它们与 React 中的其他组件类型(如类组件或 Hooks)结合使用,以实现更复杂的 UI 交互和功能。
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

解决MATLAB开根号常见问题:提供开根号运算的解决方案

![解决MATLAB开根号常见问题:提供开根号运算的解决方案](https://img-blog.csdnimg.cn/d939d1781acc404d8c826e8af207e68f.png) # 1. MATLAB开根号运算基础** MATLAB开根号运算用于计算一个数的平方根。其语法为: ``` y = sqrt(x) ``` 其中: * `x`:要开根号的数或数组 * `y`:开根号的结果 开根号运算的输入可以是实数、复数、矩阵或数组。对于实数,开根号运算返回一个非负实数。对于复数,开根号运算返回一个复数。对于矩阵或数组,开根号运算逐元素执行,对每个元素进行开根号运算。 #
recommend-type

inputstream

Inputstream是Java中用于从输入流中读取数据的抽象类,它是Java I/O类库中的一部分。Inputstream提供了read()和read(byte[] b)等方法,可以从输入流中读取一个字节或一组字节。在Java中,FileInputStream、ByteArrayInputStream和StringBufferInputStream都是Inputstream的子类,用于读取不同类型的输入流。