cv.threshold c++

时间: 2024-11-06 19:24:43 浏览: 30
`cv.threshold()`是OpenCV库中的一个函数,用于将一幅图像分割成两个阈值区域,通常用于二值化操作,即把图像转换为只有黑(0)和白(255)两部分。这个函数的主要原型如下: ```cpp void threshold(InputArray src, OutputArray dst, double thresh, double maxval, int type, InputArray mask = noArray(), bool invert = false); ``` 参数解释: 1. `src`:输入图像数组。 2. `dst`:输出处理后的图像数组,通常是一个8位无符号类型的单通道图像。 3. `thresh`:阈值,小于该值的像素会被设为最小值(如果`invert`为false),大于等于该值的像素会被设为最大值(如果`invert`为true)。 4. `maxval`:当`type`是THRESH_BINARY_INV或THRESH_TRUNC时,这是设定的最大值;对于其他`type`,它通常可以设置为255。 5. `type`:指定阈值处理的方式,如THRESH_BINARY(二值化)、THRESH_BINARY_INV(反向二值化)、THRESH_TRUNC(截断)等。 6. `mask`:可选的掩码数组,用于限制处理范围。 7. `invert`:布尔值,指示是否反转阈值条件。 使用`cv.threshold()`时,你可以控制图像的黑白转换过程,这对于目标检测、边缘检测等计算机视觉任务非常重要。
相关问题

cv2.drawContours c++

以下是使用C++中的cv2.drawContours()函数的示例代码: ```c++ #include <opencv2/opencv.hpp> #include <iostream> using namespace cv; using namespace std; int main() { // 读取图像 Mat image = imread("example.jpg"); // 转换为灰度图像 Mat gray; cvtColor(image, gray, COLOR_BGR2GRAY); // 二值化 Mat binary; threshold(gray, binary, 100, 255, THRESH_BINARY); // 查找轮廓 vector<vector<Point>> contours; findContours(binary, contours, RETR_EXTERNAL, CHAIN_APPROX_SIMPLE); // 绘制轮廓 Mat result(image.size(), CV_8U, Scalar(255)); drawContours(result, contours, -1, Scalar(0), 2); // 显示结果 imshow("Result", result); waitKey(0); return 0; } ``` 在这个示例中,我们首先读取了一张图像,然后将其转换为灰度图像并进行二值化处理。接下来,我们使用findContours()函数查找图像中的轮廓,并将其存储在一个vector<vector<Point>>类型的变量中。最后,我们使用drawContours()函数将轮廓绘制在一张新的图像上,并显示结果。

import numpy as np import cv2 as cv # 加载图片 img = cv.imread('4.jpg') # 灰度化 img_gray = cv.cvtColor(img, cv.COLOR_BGR2GRAY) # 二值化 ret, thresh = cv.threshold(img_gray, 127, 255, cv.THRESH_BINARY) # 寻找连通域 num_labels, labels, stats, centroids = cv.connectedComponentsWithStats(thresh, connectivity=8) # 计算平均面积 areas = list() for i in range(num_labels): areas.append(stats[i][-1]) print("轮廓%d的面积:%d" % (i, stats[i][-1])) area_avg = np.average(areas[1:-1]) print("轮廓平均面积:", area_avg) # 筛选超过平均面积的连通域 image_filtered = np.zeros_like(img) for (i, label) in enumerate(np.unique(labels)): # 如果是背景,忽略 if label == 0: continue if stats[i][-1] < area_avg : image_filtered[labels == i] = 255 #cv.imshow("image_filtered", image_filtered) #cv.imshow("img", img) cv.imwrite('4.jpg',image_filtered ) cv.waitKey() cv.destroyAllWindows(),将上述代码转化为c++形式

以下是将上述Python代码转化为C++形式的示例: ```cpp #include <iostream> #include <opencv2/opencv.hpp> using namespace std; using namespace cv; int main() { // 加载图片 Mat img = imread("4.jpg"); // 灰度化 Mat img_gray; cvtColor(img, img_gray, COLOR_BGR2GRAY); // 二值化 Mat thresh; threshold(img_gray, thresh, 127, 255, THRESH_BINARY); // 寻找连通域 Mat labels, stats, centroids; int num_labels = connectedComponentsWithStats(thresh, labels, stats, centroids, 8); // 计算平均面积 vector<int> areas; for (int i = 0; i < num_labels; i++) { areas.push_back(stats.at<int>(i, CC_STAT_AREA)); cout << "轮廓" << i << "的面积:" << stats.at<int>(i, CC_STAT_AREA) << endl; } double area_avg = mean(Mat(areas))[0]; cout << "轮廓平均面积:" << area_avg << endl; // 筛选超过平均面积的连通域 Mat image_filtered = Mat::zeros(img.size(), CV_8UC1); for (int i = 1; i < num_labels; i++) { if (stats.at<int>(i, CC_STAT_AREA) < area_avg) { labels.setTo(0, labels == i); } else { image_filtered.setTo(255, labels == i); } } // 显示结果 imshow("image_filtered", image_filtered); imshow("img", img); waitKey(); destroyAllWindows(); // 保存结果 imwrite("4.jpg", image_filtered); return 0; } ``` 需要注意的是,C++中没有Python中的`list`类型,需要使用`vector`替代。同时,C++中没有Python中的`np.average()`方法,需要使用OpenCV的`mean()`方法计算平均值。此外,C++中的Mat类需要使用`.at()`方法访问元素,而不是Python中的下标索引。
阅读全文

相关推荐

import cv2 import math def cal_ang(start, center, end): point_1 = start point_2 = center point_3 = end a = math.sqrt( (point_2[0] - point_3[0]) * (point_2[0] - point_3[0]) + (point_2[1] - point_3[1]) * (point_2[1] - point_3[1])) b = math.sqrt( (point_1[0] - point_3[0]) * (point_1[0] - point_3[0]) + (point_1[1] - point_3[1]) * (point_1[1] - point_3[1])) c = math.sqrt( (point_1[0] - point_2[0]) * (point_1[0] - point_2[0]) + (point_1[1] - point_2[1]) * (point_1[1] - point_2[1])) A = math.degrees(math.acos((a * a - b * b - c * c) / (-2 * b * c))) B = math.degrees(math.acos((b * b - a * a - c * c) / (-2 * a * c))) C = math.degrees(math.acos((c * c - a * a - b * b) / (-2 * a * b))) return B img = cv2.imread('46.png') gray = cv2.cvtColor(img,cv2.COLOR_BGR2GRAY) ret,thresh = cv2.threshold(gray, 70, 255, cv2.THRESH_BINARY) contours,hierarchy=cv2.findContours(thresh,cv2.RETR_EXTERNAL,cv2.CHAIN_APPROX_NONE) hull = cv2.convexHull(contours[0],returnPoints=False) defects = cv2.convexityDefects(contours[0],hull) start = end = (0,0) for i in range(0,defects.shape[0]): s,e,f,d = defects[i,0] start = tuple(contours[0][s][0]) end = tuple(contours[0][e][0]) far = tuple(contours[0][f][0]) if d > 5000: cv2.line(img,start,end,[0,255,0],2) cv2.circle(img,end,5,[0,0,255],-1) cv2.circle(img,start,5,[0,0,255],-1) break cv2.imshow('find', img) center,radius = cv2.minEnclosingCircle(contours[0]) cv2.circle(img,(int(center[0]),int(center[1])),8,(255,0,255),-1) cv2.circle(img,end,8,[255,0,0],-1) cv2.circle(img,start,8,[255,0,0],-1) cv2.line(img,start,(int(center[0]),int(center[1])),[0,0,255],2) cv2.line(img,end,(int(center[0]),int(center[1])),[0,0,255],2) angle = cal_ang(start,center,end) print('angle = %0.2f' % angle) length = (1 - angle / 360.0) * math.pi * radius * 2 print((angle / 360.0)) print('radius = %0.2f' % radius) strL = 'length=%0.2f' % length cv2.putText(img,strL,(int(center[0]-40),int(center[1]+40)),0,0.8,(0,255,0),2) cv2.imshow('result', img) angle_1 = cal_ang(start, center, ((center[0]+100),(center[1]))) angle_2 = cal_ang(end, center, ((center[0]+100),(center[1]))) cv2.ellipse(img,(int(center[0]),int(center[1])),(int(radius),int(radius)),0,-angle_1,0,(255,0,255),2, cv2.LINE_AA) cv2.ellipse(img,(int(center[0]),int(center[1])),(int(radius),int(radius)),0,0,angle_2,(255,0,255),2,cv2.LINE_AA) cv2.imshow('result', img) cv2.imwrite('result.png',img) cv2.waitKey(0) cv2.destroyAllWindows(),将这段代码转换为c++

最新推荐

recommend-type

opencv3/C++图像边缘提取方式

OpenCV 是一个计算机视觉库,提供了许多图像处理算法,今天我们将讨论 OpenCV 3 中的图像边缘提取方式。 图像边缘提取 图像边缘提取是图像处理技术中的一种重要技术,它可以从图像中提取边缘信息,边缘信息可以...
recommend-type

opencv3/C++实现视频读取、视频写入

在OpenCV库中,视频处理是一项重要的功能,包括视频的读取和写入。本文将详细介绍如何使用OpenCV3和C++实现这两个操作,并提供相关的代码示例。...了解这些基础知识对于进行计算机视觉项目至关重要。
recommend-type

opencv3/C++实现霍夫圆/直线检测

在计算机视觉领域,OpenCV库提供了强大的图像处理和分析功能,其中包括霍夫变换(Hough Transform)算法,用于检测图像中的直线和圆。本篇文章将详细介绍如何使用OpenCV3和C++来实现霍夫直线检测和霍夫圆检测。 ...
recommend-type

ssm-vue-校园代购服务订单管理系统-源码工程-32页从零开始全套图文详解-34页参考论文-27页参考答辩-全套开发环境工具、文档模板、电子教程、视频教学资源.zip

资源说明: 1:csdn平台资源详情页的文档预览若发现'异常',属平台多文档混合解析和叠加展示风格,请放心使用。 2:32页图文详解文档(从零开始项目全套环境工具安装搭建调试运行部署,保姆级图文详解)。 3:34页范例参考毕业论文,万字长文,word文档,支持二次编辑。 4:27页范例参考答辩ppt,pptx格式,支持二次编辑。 5:工具环境、ppt参考模板、相关教程资源分享。 6:资源项目源码均已通过严格测试验证,保证能够正常运行,本项目仅用作交流学习参考,请切勿用于商业用途。 7:项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通。 内容概要: 本系统基于 B/S 网络结构,在IDEA中开发。服务端用 Java 并借 ssm 框架(Spring+SpringMVC+MyBatis)搭建后台。前台采用支持 HTML5 的 VUE 框架。用 MySQL 存储数据,可靠性强。 能学到什么: 学会用ssm搭建后台,提升效率、专注业务。学习 VUE 框架构建交互界面、前后端数据交互、MySQL管理数据、从零开始环境搭建、调试、运行、打包、部署流程。
recommend-type

【毕业设计】matlab植物虫害检测的系统源码.zip

【毕业设计】matlab植物虫害检测的系统源码.zip
recommend-type

降低成本的oracle11g内网安装依赖-pdksh-5.2.14-1.i386.rpm下载

资源摘要信息: "Oracle数据库系统作为广泛使用的商业数据库管理系统,其安装过程较为复杂,涉及到多个预安装依赖包的配置。本资源提供了Oracle 11g数据库内网安装所必需的预安装依赖包——pdksh-5.2.14-1.i386.rpm,这是一种基于UNIX系统使用的命令行解释器,即Public Domain Korn Shell。对于Oracle数据库的安装,pdksh是必须的预安装组件,其作用是为Oracle安装脚本提供命令解释的环境。" Oracle数据库的安装与配置是一个复杂的过程,需要诸多组件的协同工作。在Linux环境下,尤其在内网环境中安装Oracle数据库时,可能会因为缺少某些关键的依赖包而导致安装失败。pdksh是一个自由软件版本的Korn Shell,它基于Bourne Shell,同时引入了C Shell的一些特性。由于Oracle数据库对于Shell脚本的兼容性和可靠性有较高要求,因此pdksh便成为了Oracle安装过程中不可或缺的一部分。 在进行Oracle 11g的安装时,如果没有安装pdksh,安装程序可能会报错或者无法继续。因此,确保pdksh已经被正确安装在系统上是安装Oracle的第一步。根据描述,这个特定的pdksh版本——5.2.14,是一个32位(i386架构)的rpm包,适用于基于Red Hat的Linux发行版,如CentOS、RHEL等。 运维人员在进行Oracle数据库安装时,通常需要下载并安装多个依赖包。在描述中提到,下载此依赖包的价格已被“打下来”,暗示了市场上其他来源可能提供的费用较高,这可能是因为Oracle数据库的软件和依赖包通常价格不菲。为了降低IT成本,本文档提供了实际可行的、经过测试确认可用的资源下载途径。 需要注意的是,仅仅拥有pdksh-5.2.14-1.i386.rpm文件是不够的,还要确保系统中已经安装了正确的依赖包管理工具,并且系统的软件仓库配置正确,以便于安装rpm包。在安装rpm包时,通常需要管理员权限,因此可能需要使用sudo或以root用户身份来执行安装命令。 除了pdksh之外,Oracle 11g安装可能还需要其他依赖,如系统库文件、开发工具等。如果有其他依赖需求,可以参考描述中提供的信息,点击相关者的头像,访问其提供的其他资源列表,以找到所需的相关依赖包。 总结来说,pdksh-5.2.14-1.i386.rpm包是Oracle 11g数据库内网安装过程中的关键依赖之一,它的存在对于运行Oracle安装脚本是必不可少的。当运维人员面对Oracle数据库安装时,应当检查并确保所有必需的依赖组件都已准备就绪,而本文档提供的资源将有助于降低安装成本,并确保安装过程的顺利进行。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

云计算术语全面掌握:从1+X样卷A卷中提炼精华

![云计算术语全面掌握:从1+X样卷A卷中提炼精华](https://ask.qcloudimg.com/http-save/yehe-1475574/696453895d391e6b0f0e27455ef79c8b.jpeg) # 摘要 本文全面解析了云计算的基础概念,并深入理解了云计算服务模型,包括IaaS、PaaS和SaaS的区别及其应用。文章详细探讨了云计算部署模型,包括公有云、私有云及混合云的架构优势和选择策略。同时,本文也实践应用了云计算的关键技术,如虚拟化、容器技术以及云安全策略。此外,文章探讨了云服务管理与监控的工具、最佳实践、性能监控以及合规性和可持续发展问题。最后,本文通
recommend-type

. 索读取⼀幅图像,让该图像拼接⾃身图像,分别⽤⽔ 平和垂直 2 种。要求运⾏结果弹窗以⾃⼰的名字全拼命名。

在Python中,我们可以使用PIL(Pillow)库来处理图像并实现您所描述的功能。首先,你需要安装PIL库,如果还没有安装,可以使用pip install pillow命令。以下是简单的步骤来实现这个功能: 1. 打开图像文件: ```python from PIL import Image def open_image_and_display(image_path): img = Image.open(image_path) ``` 2. 创建一个新的空白图像,用于存放拼接后的图像: ```python def create_concat_image(img, directi
recommend-type

Java基础实验教程Lab1解析

资源摘要信息:"Java Lab1实践教程" 本次提供的资源是一个名为"Lab1"的Java实验室项目,旨在帮助学习者通过实践来加深对Java编程语言的理解。从给定的文件信息来看,该项目的名称为"Lab1",它的描述同样是"Lab1",这表明这是一个基础的实验室练习,可能是用于介绍Java语言或设置一个用于后续实践的开发环境。文件列表中的"Lab1-master"表明这是一个主版本的压缩包,包含了多个文件和可能的子目录结构,用于确保完整性和便于版本控制。 ### Java知识点详细说明 #### 1. Java语言概述 Java是一种高级的、面向对象的编程语言,被广泛用于企业级应用开发。Java具有跨平台的特性,即“一次编写,到处运行”,这意味着Java程序可以在支持Java虚拟机(JVM)的任何操作系统上执行。 #### 2. Java开发环境搭建 对于一个Java实验室项目,首先需要了解如何搭建Java开发环境。通常包括以下步骤: - 安装Java开发工具包(JDK)。 - 配置环境变量(JAVA_HOME, PATH)以确保可以在命令行中使用javac和java命令。 - 使用集成开发环境(IDE),如IntelliJ IDEA, Eclipse或NetBeans,这些工具可以简化编码、调试和项目管理过程。 #### 3. Java基础语法 在Lab1中,学习者可能需要掌握一些Java的基础语法,例如: - 数据类型(基本类型和引用类型)。 - 变量的声明和初始化。 - 控制流语句,包括if-else, for, while和switch-case。 - 方法的定义和调用。 - 数组的使用。 #### 4. 面向对象编程概念 Java是一种面向对象的编程语言,Lab1项目可能会涉及到面向对象编程的基础概念,包括: - 类(Class)和对象(Object)的定义。 - 封装、继承和多态性的实现。 - 构造方法(Constructor)的作用和使用。 - 访问修饰符(如private, public)的使用,以及它们对类成员访问控制的影响。 #### 5. Java标准库使用 Java拥有一个庞大的标准库,Lab1可能会教授学习者如何使用其中的一些基础类和接口,例如: - 常用的java.lang包下的类,如String, Math等。 - 集合框架(Collections Framework),例如List, Set, Map等接口和实现类。 - 异常处理机制,包括try-catch块和异常类层次结构。 #### 6. 实验室项目实践 实践是学习编程最有效的方式之一。Lab1项目可能包含以下类型的实际练习: - 创建一个简单的Java程序,比如一个控制台计算器。 - 实现基本的数据结构和算法,如链表、排序和搜索。 - 解决特定的问题,比如输入处理和输出格式化。 #### 7. 项目组织和版本控制 "Lab1-master"文件名暗示该项目可能采用Git作为版本控制系统。在项目实践中,学习者可能需要了解: - 如何使用Git命令进行版本控制。 - 分支(Branch)的概念和合并(Merge)的策略。 - 创建和管理Pull Request来协作和审查代码。 #### 8. 代码规范和文档 良好的代码规范和文档对于保持代码的可读性和可维护性至关重要。Lab1项目可能会强调: - 遵循Java编码标准,例如命名约定、注释习惯。 - 编写文档注释(Javadoc),以便自动生成API文档。 通过Lab1项目的实践和指导,学习者能够逐步掌握Java编程语言的核心知识,并为后续更深入的学习和项目开发打下坚实的基础。