Error in which.min(model[[i]]$record_evals$test$l2) : 'list' object cannot be coerced to type 'double'

时间: 2024-09-26 11:02:03 浏览: 21
这个错误消息在R中通常出现在尝试对一个列表(list)对象应用`which.min`或`which.max`这样的函数时。在这个上下文中,`model[[i]]$record_evals$test$l2`看起来像是模型记录中某一部分,可能是测试集的某种评价指标(比如L2损失),但它是一个包含数值的列表,而不是单一的数值。 具体来说,`which.min`期望找到一个数值向量中的最小值,然而这里遇到的是一个列表,每个元素可能都有对应的评估值。为了修复这个问题,你需要确认一下: 1. 确定`l2`是否真的是一个单值,如果不是,可能需要提取其中的某个特定值来进行操作。如果`l2`本身就是一个列表,那么需要将其转换为向量或者找到一个合理的代表整个列表平均值的方法。 2. 检查`model`结构,确保`record_evals$test`部分确实有`l2`字段,而且其内容是可以直接比较的数值。 3. 可能你的目的是找出所有`l2`中最小的那个,如果是这样的话,可能需要遍历整个列表并手动维护最小值,而不是使用`which.min`。 如果你的代码示例如下: ```R min_index <- which.min(model[[i]]$record_evals$test$l2) ``` 你应该修改为: ```R # 如果l2是列表,尝试取第一个元素 if(is.list(model[[i]]$record_evals$test$l2)) { min_l2 <- min(model[[i]]$record_evals$test$l2[[1]]) } else { min_l2 <- model[[i]]$record_evals$test$l2 } min_index <- which(min_l2 == min(min_l2)) ``` 或者更简洁地: ```R min_index <- sapply(model[[i]]$record_evals$test$l2, which.min) ```
阅读全文

相关推荐

import pandas as pd from sklearn import metrics from sklearn.model_selection import train_test_split import xgboost as xgb import matplotlib.pyplot as plt import openpyxl # 导入数据集 df = pd.read_csv("/Users/mengzihan/Desktop/正式有血糖聚类前.csv") data=df.iloc[:,:35] target=df.iloc[:,-1] # 切分训练集和测试集 train_x, test_x, train_y, test_y = train_test_split(data,target,test_size=0.2,random_state=7) # xgboost模型初始化设置 dtrain=xgb.DMatrix(train_x,label=train_y) dtest=xgb.DMatrix(test_x) watchlist = [(dtrain,'train')] # booster: params={'booster':'gbtree', 'objective': 'binary:logistic', 'eval_metric': 'auc', 'max_depth':12, 'lambda':10, 'subsample':0.75, 'colsample_bytree':0.75, 'min_child_weight':2, 'eta': 0.025, 'seed':0, 'nthread':8, 'gamma':0.15, 'learning_rate' : 0.01} # 建模与预测:50棵树 bst=xgb.train(params,dtrain,num_boost_round=50,evals=watchlist) ypred=bst.predict(dtest) # 设置阈值、评价指标 y_pred = (ypred >= 0.5)*1 print ('Precesion: %.4f' %metrics.precision_score(test_y,y_pred)) print ('Recall: %.4f' % metrics.recall_score(test_y,y_pred)) print ('F1-score: %.4f' %metrics.f1_score(test_y,y_pred)) print ('Accuracy: %.4f' % metrics.accuracy_score(test_y,y_pred)) print ('AUC: %.4f' % metrics.roc_auc_score(test_y,ypred)) ypred = bst.predict(dtest) print("测试集每个样本的得分\n",ypred) ypred_leaf = bst.predict(dtest, pred_leaf=True) print("测试集每棵树所属的节点数\n",ypred_leaf) ypred_contribs = bst.predict(dtest, pred_contribs=True) print("特征的重要性\n",ypred_contribs ) xgb.plot_importance(bst,height=0.8,title='影响糖尿病的重要特征', ylabel='特征') plt.rc('font', family='Arial Unicode MS', size=14) plt.show()

以下这段代码是关于CatBoost模型的超参数调整,但里面好像不是在五倍交叉验证下做的分析,请问应该怎么加上五倍交叉验证呢?import os import time import pandas as pd from catboost import CatBoostRegressor from hyperopt import fmin, hp, partial, Trials, tpe,rand from sklearn.metrics import r2_score, mean_squared_error from sklearn.model_selection import train_test_split from sklearn.model_selection import KFold, cross_val_score as CVS, train_test_split as TTS 自定义hyperopt的参数空间 space = {"iterations": hp.choice("iterations", range(1, 30)), "depth": hp.randint("depth", 16), "l2_leaf_reg": hp.randint("l2_leaf_reg", 222), "border_count": hp.randint("border_count", 222), 'learning_rate': hp.uniform('learning_rate', 0.001, 0.9), } data = pd.read_csv(r"E:\exercise\synthesis\synthesis_dummy_2.csv") #验证随机森林填补缺失值方法是否有效 X = data.iloc[:,1:] y = data.iloc[:,0] Xtrain,Xtest,Ytrain,Ytest = TTS(X_wrapper,y,test_size=0.2,random_state=100) def epoch_time(start_time, end_time): elapsed_secs = end_time - start_time elapsed_mins = elapsed_secs / 60 return elapsed_mins, elapsed_secs 自动化调参并训练 def cat_factory(argsDict): estimator = CatBoostRegressor(loss_function='RMSE', random_seed=22, learning_rate=argsDict['learning_rate'], iterations=argsDict['iterations'], l2_leaf_reg=argsDict['l2_leaf_reg'], border_count=argsDict['border_count'], depth=argsDict['depth'], verbose=0) estimator.fit(Xtrain, Ytrain) val_pred = estimator.predict(Xtest) mse = mean_squared_error(Ytest, val_pred) return mse

以下代码是哪出现了问题呢?为什么运行报错“subsample”:from sklearn.model_selection import cross_val_score from hyperopt import hp, fmin, tpe, Trials from xgboost import XGBRegressor as XGBR data = pd.read_csv(r"E:\exercise\synthesis\synthesis_dummy_2.csv") #验证随机森林填补缺失值方法是否有效 X = data.iloc[:,1:] y = data.iloc[:,0] # 定义超参数空间min_child_weight在0~40;num_boost_round的范围可以定到range(1,100,2);gamma在[20,100];lambda范围[1,2]; space = { 'max_depth': hp.choice('max_depth', range(1, 30)), 'n_estimators':hp.quniform("n_estimators",1,100), 'learning_rate':hp.uniform('subsample', 0.1, 1), 'min_child_weight': hp.choice('min_child_weight', range(1, 40)), 'gamma': hp.uniform('gamma', 1, 100), 'subsample': hp.uniform('subsample', 0.1, 1), 'colsample_bytree': hp.uniform('colsample_bytree', 0.1, 1) } # 定义目标函数 def hyperopt_objective(params): reg = XGBR(random_state=100, **params) scores = cross_val_score(reg, Xtrain, Ytrain, cv=5) # 五倍交叉验证 return 1 - scores.mean() # 返回平均交叉验证误差的相反数,即最小化误差 # 创建Trials对象以记录调参过程 trials = Trials() # 使用贝叶斯调参找到最优参数组合 best = fmin(hyperopt_objective, space, algo=tpe.suggest, max_evals=100, trials=trials) # 输出最优参数组合 print("Best parameters:", best) # 在最优参数组合下训练模型 best_params = space_eval(space, best) reg = XGBR(random_state=100, **best_params) reg.fit(Xtrain, Ytrain) # 在验证集上评估模型 y_pred = reg.predict(X_val) evaluation = evaluate_model(y_val, y_pred) # 自定义评估函数 print("Model evaluation:", evaluation)

以下这段代码中的X_val、y_val是来自哪儿呢,没有看到有X和Y的对训练集和测试集的划分的代码,并且这段代码还报错”name 'space_eval' is not defined“,且Xtrain,Xtest,Ytrain,Ytest = TTS(X, y,test_size=0.2,random_state=100)只划分了训练集和测试集,验证集是在哪呢?还有一个问题是以下代码用了五倍交叉验证,所以不需要用这段代码"Xtrain,Xtest,Ytrain,Ytest = TTS(X, y,test_size=0.2,random_state=100)”来划分训练集和测试集了吗:from sklearn.model_selection import cross_val_score from hyperopt import hp, fmin, tpe, Trials from xgboost import XGBRegressor as XGBR # 定义超参数空间 space = { 'max_depth': hp.choice('max_depth', range(1, 10)), 'min_child_weight': hp.choice('min_child_weight', range(1, 10)), 'gamma': hp.choice('gamma', [0, 1, 5, 10]), 'subsample': hp.uniform('subsample', 0.5, 1), 'colsample_bytree': hp.uniform('colsample_bytree', 0.5, 1) } # 定义目标函数 def hyperopt_objective(params): reg = XGBR(random_state=100, n_estimators=22, **params) scores = cross_val_score(reg, X_train, y_train, cv=5) # 五倍交叉验证 return 1 - scores.mean() # 返回平均交叉验证误差的相反数,即最小化误差 # 创建Trials对象以记录调参过程 trials = Trials() # 使用贝叶斯调参找到最优参数组合 best = fmin(hyperopt_objective, space, algo=tpe.suggest, max_evals=100, trials=trials) # 输出最优参数组合 print("Best parameters:", best) # 在最优参数组合下训练模型 best_params = space_eval(space, best) reg = XGBR(random_state=100, n_estimators=22, **best_params) reg.fit(X_train, y_train) # 在验证集上评估模型 y_pred = reg.predict(X_val) evaluation = evaluate_model(y_val, y_pred) # 自定义评估函数 print("Model evaluation:", evaluation)

最新推荐

recommend-type

MiniGui业务开发基础培训-htk

MiniGui业务开发基础培训-htk
recommend-type

com.harmonyos.exception.DiskReadWriteException(解决方案).md

鸿蒙开发中碰到的报错,问题已解决,写个文档记录一下这个问题及解决方案
recommend-type

网络分析-Wireshark数据包筛选技巧详解及应用实例

内容概要:本文档详细介绍了Wireshark软件中各种数据包筛选规则,主要包括协议、IP地址、端口号、包长以及MAC地址等多个维度的具体筛选方法。同时提供了大量实用案例供读者学习,涵盖HTTP协议相关命令和逻辑条件的综合使用方式。 适合人群:对网络安全或数据分析有一定兴趣的研究者,熟悉基本网络概念和技术的专业人士。 使用场景及目标:适用于需要快速准确捕获特定类型网络流量的情况;如网络安全检测、性能优化分析、教学演示等多种实际应用场景。 阅读建议:本资料侧重于实操技能提升,在学习时最好配合实际操作练习效果更佳。注意掌握不同类型条件组合的高级用法,增强问题解决能力。
recommend-type

前端协作项目:发布猜图游戏功能与待修复事项

资源摘要信息:"People-peephole-frontend是一个面向前端开发者的仓库,包含了一个由Rails和IOS团队在2015年夏季亚特兰大Iron Yard协作完成的项目。该仓库中的项目是一个具有特定功能的应用,允许用户通过iPhone或Web应用发布图像,并通过多项选择的方式让用户猜测图像是什么。该项目提供了一个互动性的平台,使用户能够通过猜测来获取分数,正确答案将提供积分,并防止用户对同一帖子重复提交答案。 当前项目存在一些待修复的错误,主要包括: 1. 答案提交功能存在问题,所有答案提交操作均返回布尔值true,表明可能存在逻辑错误或前端与后端的数据交互问题。 2. 猜测功能无法正常工作,这可能涉及到游戏逻辑、数据处理或是用户界面的交互问题。 3. 需要添加计分板功能,以展示用户的得分情况,增强游戏的激励机制。 4. 删除帖子功能存在损坏,需要修复以保证应用的正常运行。 5. 项目的样式过时,需要更新以反映跨所有平台的流程,提高用户体验。 技术栈和依赖项方面,该项目需要Node.js环境和npm包管理器进行依赖安装,因为项目中使用了大量Node软件包。此外,Bower也是一个重要的依赖项,需要通过bower install命令安装。Font-Awesome和Materialize是该项目用到的前端资源,它们提供了图标和界面组件,增强了项目的视觉效果和用户交互体验。 由于本仓库的主要内容是前端项目,因此JavaScript知识在其中扮演着重要角色。开发者需要掌握JavaScript的基础知识,以及可能涉及到的任何相关库或框架,比如用于开发Web应用的AngularJS、React.js或Vue.js。同时,对于iOS开发,可能还会涉及到Swift或Objective-C等编程语言,以及相应的开发工具Xcode。对于Rails,开发者则需要熟悉Ruby编程语言以及Rails框架的相关知识。 开发流程中可能会使用的其他工具包括: - Git:用于版本控制和代码管理。 - HTML/CSS:用于构建网页结构和样式。 - Webpack或Gulp:用于项目构建和优化流程。 - Babel:用于JavaScript代码的兼容性处理。 - Linting工具:如ESLint,用于代码质量检查和维护代码风格一致性。 总结来看,People-peephole-frontend项目不仅涉及到了跨平台协作的经验分享,还提供了前端开发的学习和实践机会,尤其在交互设计、前端工程化、依赖管理及样式设计等方面。开发者可以通过参与该项目的修复和完善工作,提高自身技能并积累宝贵的项目经验。"
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【高斯信道信号编码优化】:4大方法优化Chirp信号编码过程

![高斯信道下的chirp信号解调](https://img-blog.csdnimg.cn/d37646d14e4e4b51b01e617b59167c74.png) # 1. 高斯信道与Chirp信号编码基础 ## 简介 在现代通信领域,信息的传递无处不在,而保障信息传递的清晰与高效是通信技术的核心挑战之一。高斯信道作为通信系统中最常见和基础的模型,为我们理解和优化信号传输提供了重要的理论支持。Chirp信号,以其独特的频谱扩展特性,在无线通信、雷达和声纳系统中发挥着越来越重要的作用。本章将介绍高斯信道的特性以及Chirp信号的基础知识,为读者搭建起后续章节深入探讨优化方法的理论基础。
recommend-type

对给定图,实现图的深度优先遍历和广度优先遍历。以邻接表或邻接矩阵为存储结构,实现连通无向图的深度优先和广度优先遍历。以用户指定的结点为起点,分别输出每种遍历下的结点访问序列,并调试算法。使用C语言

在C语言中,我们可以使用邻接表或邻接矩阵来存储图的数据结构。这里我将简单介绍如何实现深度优先搜索(DFS)和广度优先搜索(BFS): **使用邻接表实现:** ```c #include <stdio.h> #include <stdlib.h> typedef struct Node { int val; struct Node* next; } Node; // 创建邻接列表表示图 Node* createAdjacencyList(int numNodes) { // 初始化节点数组 Node** adjList = malloc(sizeof(No
recommend-type

Spring框架REST服务开发实践指南

资源摘要信息: "在本教程中,我们将详细介绍如何使用Spring框架来构建RESTful Web服务,提供对Java开发人员的基础知识和学习参考。" 一、Spring框架基础知识 Spring是一个开源的Java/Java EE全功能栈(full-stack)应用程序框架和 inversion of control(IoC)容器。它主要分为以下几个核心模块: - 核心容器:包括Core、Beans、Context和Expression Language模块。 - 数据访问/集成:涵盖JDBC、ORM、OXM、JMS和Transaction模块。 - Web模块:提供构建Web应用程序的Spring MVC框架。 - AOP和Aspects:提供面向切面编程的实现,允许定义方法拦截器和切点来清晰地分离功能。 - 消息:提供对消息传递的支持。 - 测试:支持使用JUnit或TestNG对Spring组件进行测试。 二、构建RESTful Web服务 RESTful Web服务是一种使用HTTP和REST原则来设计网络服务的方法。Spring通过Spring MVC模块提供对RESTful服务的构建支持。以下是一些关键知识点: - 控制器(Controller):处理用户请求并返回响应的组件。 - REST控制器:特殊的控制器,用于创建RESTful服务,可以返回多种格式的数据(如JSON、XML等)。 - 资源(Resource):代表网络中的数据对象,可以通过URI寻址。 - @RestController注解:一个方便的注解,结合@Controller注解使用,将类标记为控制器,并自动将返回的响应体绑定到HTTP响应体中。 - @RequestMapping注解:用于映射Web请求到特定处理器的方法。 - HTTP动词(GET、POST、PUT、DELETE等):在RESTful服务中用于执行CRUD(创建、读取、更新、删除)操作。 三、使用Spring构建REST服务 构建REST服务需要对Spring框架有深入的理解,以及熟悉MVC设计模式和HTTP协议。以下是一些关键步骤: 1. 创建Spring Boot项目:使用Spring Initializr或相关构建工具(如Maven或Gradle)初始化项目。 2. 配置Spring MVC:在Spring Boot应用中通常不需要手动配置,但可以进行自定义。 3. 创建实体类和资源控制器:实体类映射数据库中的数据,资源控制器处理与实体相关的请求。 4. 使用Spring Data JPA或MyBatis进行数据持久化:JPA是一个Java持久化API,而MyBatis是一个支持定制化SQL、存储过程以及高级映射的持久层框架。 5. 应用切面编程(AOP):使用@Aspect注解定义切面,通过切点表达式实现方法的拦截。 6. 异常处理:使用@ControllerAdvice注解创建全局异常处理器。 7. 单元测试和集成测试:使用Spring Test模块进行控制器的测试。 四、学习参考 - 国际奥委会:可能是错误的提及,对于本教程没有相关性。 - AOP:面向切面编程,是Spring的核心功能之一。 - MVC:模型-视图-控制器设计模式,是构建Web应用的常见架构。 - 道:在这里可能指学习之道,或者是学习Spring的原则和最佳实践。 - JDBC:Java数据库连接,是Java EE的一部分,用于在Java代码中连接和操作数据库。 - Hibernate:一个对象关系映射(ORM)框架,简化了数据库访问代码。 - MyBatis:一个半自动化的ORM框架,它提供了更细致的SQL操作方式。 五、结束语 以上内容为《learnSpring:学习春天》的核心知识点,涵盖了从Spring框架的基础知识、RESTful Web服务的构建、使用Spring开发REST服务的方法,以及与学习Spring相关的技术栈介绍。对于想要深入学习Java开发,特别是RESTful服务开发的开发者来说,这是一份非常宝贵的资源。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

【Chirp信号检测算法精解】:掌握高效检测Chirp信号的5大关键步骤

![高斯信道下的chirp信号解调](https://img-blog.csdnimg.cn/1fb88c1f540143859ce0683d26104234.png) # 1. Chirp信号检测算法概述 Chirp信号检测是现代信号处理中的一个关键环节,广泛应用于雷达、声纳、无线通信等领域。Chirp信号,即线性调频连续波信号,因其具有良好的时频特性、抗噪声干扰能力强而备受青睐。本章将对Chirp信号检测算法做一个简要介绍,概述其核心原理与应用场景,为后续深入探讨基础理论和关键技术打下基础。 ## 1.1 Chirp信号检测的应用背景 Chirp信号检测算法的开发与优化,源于对信号在