# 2.将数据进行标准化 scaler = MinMaxScaler() scaler_model = MinMaxScaler() data = scaler_model.fit_transform(np.array(df)) scaler.fit_transform(np.array(df['ZK3/4']).reshape(-1, 1))
时间: 2024-04-19 11:26:17 浏览: 123
这段代码用于对数据进行标准化处理。首先,我们创建了一个`MinMaxScaler`对象,用于对数据进行缩放。然后,我们使用`fit_transform`方法将数据`df`进行标准化处理,并存储在`data`变量中。
接下来,我们再次使用`MinMaxScaler`对象对特征列`ZK3/4`进行标准化处理,通过`fit_transform`方法将其转换为二维数组后再进行标准化。最后,我们可以得到经过标准化处理的数据。
请注意,这里使用的是`MinMaxScaler`进行标准化,你可以根据自己的需求选择其他的标准化方法。
相关问题
import pandas as pd from sklearn.preprocessing import MinMaxScaler from keras.models import Sequential from keras.layers import Dense, SimpleRNN from sklearn.metrics import mean_squared_error # 从Excel文件中读取数据 data = pd.read_excel('data.xlsx', sheet_name='Sheet1') # 数据归一化 scaler = MinMaxScaler(feature_range=(0, 1)) scaled_data = scaler.fit_transform(data) # 将数据划分为训练集和测试集 train_size = int(len(scaled_data) * 0.7) test_size = len(scaled_data) - train_size train_data, test_data = scaled_data[0:train_size, :], scaled_data[train_size:len(scaled_data), :] # 创建RNN模型 model = Sequential() model.add(SimpleRNN(units=64, input_shape=(1, 4), activation='relu')) model.add(Dense(units=1)) model.compile(loss='mean_squared_error', optimizer='adam') # 训练模型 model.fit(train_data[:, 0:3].reshape(-1, 1, 3), train_data[:, 3], epochs=100, batch_size=32) # 在测试集上进行预测 predicted = model.predict(test_data[:, 0:3].reshape(-1, 1, 3)) # 反归一化 predicted = scaler.inverse_transform(predicted) actual = scaler.inverse_transform(test_data[:, 3].reshape(-1, 1)) # 计算均方误差 mse = mean_squared_error(actual, predicted) print("均方误差:", mse)这个表格里的数据假有8列,向下传播最后一行是8个输出,这个里面的程序里面怎么改
根据你提供的代码,数据集的最后一列是预测目标,因此在模型的训练和测试中,应该将最后一列作为输出,前三列作为输入。如果你的数据集有8列,你需要将以下代码:
```
model.add(SimpleRNN(units=64, input_shape=(1, 4), activation='relu'))
```
修改为:
```
model.add(SimpleRNN(units=64, input_shape=(1, 3), activation='relu'))
```
这样模型的输入就是3个特征,而不是4个特征。如果你想要输出8个预测结果,你需要将以下代码:
```
model.add(Dense(units=1))
```
修改为:
```
model.add(Dense(units=8))
```
这样模型的输出就是8个预测结果。同时,你需要相应地修改训练和测试数据的形状,以及反归一化的代码。具体来说,你需要将以下代码:
```
train_data[:, 0:3].reshape(-1, 1, 3)
test_data[:, 0:3].reshape(-1, 1, 3)
predicted = scaler.inverse_transform(predicted)
actual = scaler.inverse_transform(test_data[:, 3].reshape(-1, 1))
```
修改为:
```
train_data[:, 0:3].reshape(-1, 1, 3)
test_data[:, 0:3].reshape(-1, 1, 3)
predicted = scaler.inverse_transform(predicted)
actual = scaler.inverse_transform(test_data[:, 0:8])
```
这样你就可以得到8个预测结果,并且可以将预测结果和实际结果反归一化,计算均方误差。
import pandas as pd import matplotlib.pyplot as plt import seaborn as sns from sklearn.model_selection import train_test_split from sklearn.preprocessing import StandardScaler from sklearn.ensemble import RandomForestClassifier from sklearn.metrics import confusion_matrix, classification_report, accuracy_score # 1. 数据准备 train_data = pd.read_csv('train.csv') test_data = pd.read_csv('test_noLabel.csv') # 填充缺失值 train_data.fillna(train_data.mean(), inplace=True) test_data.fillna(test_data.mean(), inplace=True) # 2. 特征工程 X_train = train_data.drop(['Label', 'ID'], axis=1) y_train = train_data['Label'] X_test = test_data.drop('ID', axis=1) scaler = StandardScaler() X_train = scaler.fit_transform(X_train) X_test = scaler.transform(X_test) # 3. 模型建立 model = RandomForestClassifier(n_estimators=100, random_state=42) # 4. 模型训练 model.fit(X_train, y_train) # 5. 进行预测 y_pred = model.predict(X_test) # 6. 保存预测结果 df_result = pd.DataFrame({'ID': test_data['ID'], 'Label': y_pred}) df_result.to_csv('forecast_result.csv', index=False) # 7. 模型评估 y_train_pred = model.predict(X_train) print('训练集准确率:', accuracy_score(y_train, y_train_pred)) print('测试集准确率:', accuracy_score(y_test, y_pred)) print(classification_report(y_test, y_pred)) # 8. 绘制柱形图 feature_importances = pd.Series(model.feature_importances_, index=X_train.columns) feature_importances = feature_importances.sort_values(ascending=False) plt.figure(figsize=(10, 6)) sns.barplot(x=feature_importances, y=feature_importances.index) plt.xlabel('Feature Importance Score') plt.ylabel('Features') plt.title('Visualizing Important Features') plt.show() # 9. 对比类分析 train_data['Label'].value_counts().plot(kind='bar', color=['blue', 'red']) plt.title('Class Distribution') plt.xlabel('Class') plt.ylabel('Frequency') plt.show()
这段代码是一个机器学习模型的完整流程,包括数据准备、特征工程、模型建立、模型训练、预测结果保存、模型评估和可视化分析等步骤。其中包括了绘制柱形图和对比类分析的代码。
绘制柱形图的代码如下:
```
feature_importances = pd.Series(model.feature_importances_, index=X_train.columns)
feature_importances = feature_importances.sort_values(ascending=False)
plt.figure(figsize=(10, 6))
sns.barplot(x=feature_importances, y=feature_importances.index)
plt.xlabel('Feature Importance Score')
plt.ylabel('Features')
plt.title('Visualizing Important Features')
plt.show()
```
这段代码会生成一个柱形图,横轴为特征重要性得分,纵轴为特征名称,用于展示机器学习模型中各个特征的重要性。
对比类分析的代码如下:
```
train_data['Label'].value_counts().plot(kind='bar', color=['blue', 'red'])
plt.title('Class Distribution')
plt.xlabel('Class')
plt.ylabel('Frequency')
plt.show()
```
这段代码会生成一个柱形图,展示训练数据中不同类别的样本数量分布情况。这个图可以用于判断数据集是否存在类别不平衡的情况,以及对模型的训练和评估结果进行解释。
阅读全文