解释这段代码cal_correlation<-function(interaction_tab,ex1,ex2,filter){ cat('calculating correlation\n') if (ncol(interaction_tab)==2){ cl = makeCluster(parallel::detectCores() - 1) clusterEvalQ(cl,library(ggm)) clusterEvalQ(cl,library(corpcor)) clusterExport(cl,c("ex1","ex2","interaction_tab"),envir=environment()) corr <- parSapply( cl, 1:nrow(interaction_tab), #whole number of combinations function(i) { xcor=cor(t(ex1[interaction_tab[i,1],]),t(ex2[interaction_tab[i,2],]), method = "pearson") return(xcor) } ) stopCluster(cl) res<-cbind(interaction_tab,corr) res<-res[abs(res[,3])>filter,] return(res) }else if (ncol(interaction_tab)==3){#abandoned cl = makeCluster(parallel::detectCores() - 1) clusterEvalQ(cl,library(ggm)) clusterEvalQ(cl,library(corpcor)) clusterExport(cl,c("ex1","ex2","interaction_tab"),envir=environment()) mydata1 <- parSapply( cl, 1:nrow(interaction_tab), #whole number of combinations function(i) { cox_all=matrix(nrow = 3, ncol = 1) ce1_1= as.character(interaction_tab[i,1]) ce2_1= as.character(interaction_tab[i,2]) miRNA1= as.character(interaction_tab[i,3]) s1<-cbind(t(ex2[ce1_1,]), t(ex2[ce2_1,]), t(ex1[miRNA1,])) xcor=cor(s1,method = "pearson") cox_all[1,1]=xcor[2,1] cox_all[2,1]=xcor[3,1] cox_all[3,1]=xcor[3,2] return(cox_all) } ) stopCluster(cl) scc<-data.frame(mydata1) scc<-t(scc) res<-cbind(interaction_tab,scc) colnames(res)<-c('x','y','miRNA','x_y','mi_x','mi_y') #post process of corr res<-res[res$x_y>filter,]#select triplets with |pcc|>filter res<-res[abs(res$mi_x)>filter & abs(res$mi_y)>filter & (res$mi_y)*(res$mi_x)>0,] return(res) } }

时间: 2024-04-19 17:28:44 浏览: 12
这段代码是一个计算相关性的函数`cal_correlation`,其功能是计算两个变量之间的相关性,并返回相关性结果。 函数接受四个参数: - `interaction_tab`:一个包含交互作用信息的表格,可能有两列或三列,表示两个或三个变量之间的交互作用。 - `ex1`:一个表示第一个变量的数据集。 - `ex2`:一个表示第二个变量的数据集。 - `filter`:过滤阈值,用于筛选相关性结果。 代码首先输出一条提示信息,然后根据交互作用表格的列数执行不同的操作。 如果交互作用表格有两列,代码会进行并行计算相关性。它使用`makeCluster`函数创建一个并行计算的集群,并在集群中加载`ggm`和`corpcor`库。然后使用`clusterExport`将`ex1`、`ex2`和`interaction_tab`导出到集群中。接下来,使用`parSapply`函数在集群中计算每个交互作用对应的相关性系数,并将结果保存在向量`corr`中。最后,通过停止集群并将结果与交互作用表格合并,得到最终的结果`res`。最后一行代码对结果进行了一些筛选,只保留相关性绝对值大于阈值`filter`的结果。 如果交互作用表格有三列,代码会进行类似的操作,但是计算的是三个变量之间的相关性。结果将保存在名为`scc`的数据框中,并对结果进行了一些后处理,筛选出满足一定条件的相关性结果。 最终,函数会返回计算得到的相关性结果。
相关问题

解释这段代码cal_correlation<-function(interaction_tab,ex1,ex2,filter){ cat('calculating correlation\n') if (ncol(interaction_tab)==2){ cl = makeCluster(parallel::detectCores() - 1) clusterEvalQ(cl,library(ggm)) clusterEvalQ(cl,library(corpcor)) clusterEx

cute(interaction_tab,ex1,ex2,filter){ cat('calculating correlation\n') if (ncol(interaction_tab)==2){ cl = makeCluster(parallel::detectCores() - 1) clusterEvalQ(cl,library(ggm)) clusterEvalQ(cl,library(corpcor)) clusterExport(cl, c("interaction_tab", "ex1", "ex2", "filter")) clusterEvalQ(cl, cal_correlation_worker <- function(interaction_tab, ex1, ex2, filter) { library(ggm) library(corpcor) df <- interaction_tab[filter, ] correlation <- cor(df[[ex1]], df[[ex2]]) return(correlation) }) result <- parLapply(cl, 1, function(x) { cal_correlation_worker(interaction_tab, ex1, ex2, filter) }) stopCluster(cl) return(unlist(result)) } else { stop("interaction_tab should have exactly two columns") } }

请一行一行的解释这段代码cal_correlation<-function(interaction_tab,ex1,ex2,filter){ cat('calculating correlation\n') if (ncol(interaction_tab)==2){ cl = makeCluster(parallel::detectCores() - 1) clusterEvalQ(cl,library(ggm)) clusterEvalQ(cl,library(corpcor)) clusterExport(cl,c("ex1","ex2","interaction_tab"),envir=environment()) corr <- parSapply( cl, 1:nrow(interaction_tab), #whole number of combinations function(i) { xcor=cor(t(ex1[interaction_tab[i,1],]),t(ex2[interaction_tab[i,2],]), method = "pearson") return(xcor) } ) stopCluster(cl) res<-cbind(interaction_tab,corr) res<-res[abs(res[,3])>filter,] return(res) }else if (ncol(interaction_tab)==3){#abandoned cl = makeCluster(parallel::detectCores() - 1) clusterEvalQ(cl,library(ggm)) clusterEvalQ(cl,library(corpcor)) clusterExport(cl,c("ex1","ex2","interaction_tab"),envir=environment()) mydata1 <- parSapply( cl, 1:nrow(interaction_tab), #whole number of combinations function(i) { cox_all=matrix(nrow = 3, ncol = 1) ce1_1= as.character(interaction_tab[i,1]) ce2_1= as.character(interaction_tab[i,2]) miRNA1= as.character(interaction_tab[i,3]) s1<-cbind(t(ex2[ce1_1,]), t(ex2[ce2_1,]), t(ex1[miRNA1,])) xcor=cor(s1,method = "pearson") cox_all[1,1]=xcor[2,1] cox_all[2,1]=xcor[3,1] cox_all[3,1]=xcor[3,2] return(cox_all) } ) stopCluster(cl) scc<-data.frame(mydata1) scc<-t(scc) res<-cbind(interaction_tab,scc) colnames(res)<-c('x','y','miRNA','x_y','mi_x','mi_y') #post process of corr res<-res[res$x_y>filter,]#select triplets with |pcc|>filter res<-res[abs(res$mi_x)>filter & abs(res$mi_y)>filter & (res$mi_y)*(res$mi_x)>0,] return(res) } }

这段代码是一个名为`cal_correlation`的函数,它用于计算相关性。下面是逐行的解释: 1. `cat('calculating correlation\n')`:打印输出 "calculating correlation"。 2. `if (ncol(interaction_tab)==2)`:如果`interaction_tab`的列数等于2,则执行以下代码块。 3. `cl = makeCluster(parallel::detectCores() - 1)`:创建一个并行计算集群。 4. `clusterEvalQ(cl,library(ggm))`:在计算集群中加载`ggm`包。 5. `clusterEvalQ(cl,library(corpcor))`:在计算集群中加载`corpcor`包。 6. `clusterExport(cl,c("ex1","ex2","interaction_tab"),envir=environment())`:将变量`ex1`、`ex2`和`interaction_tab`导出到计算集群中。 7. `corr <- parSapply(cl, 1:nrow(interaction_tab), function(i) { ... })`:使用并行计算,对`interaction_tab`的每一行执行以下代码块,并返回一个包含相关系数的向量。 8. `stopCluster(cl)`:停止计算集群。 9. `res<-cbind(interaction_tab,corr)`:将`interaction_tab`和相关系数合并为一个结果矩阵。 10. `res<-res[abs(res[,3])>filter,]`:从结果矩阵中筛选出绝对值大于给定阈值`filter`的行。 11. `return(res)`:返回筛选后的结果矩阵。 如果`interaction_tab`的列数不等于2,则执行`else if (ncol(interaction_tab)==3)`块。该块的代码是被注释掉的,即被废弃的部分,不会被执行。

相关推荐

最新推荐

recommend-type

Python中的相关分析correlation analysis的实现

主要介绍了Python中的相关分析correlation analysis的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧
recommend-type

毕业设计基于STC12C5A、SIM800C、GPS的汽车防盗报警系统源码.zip

STC12C5A通过GPS模块获取当前定位信息,如果车辆发生异常震动或车主打来电话(主动请求定位),将通过GSM发送一条定位短信到车主手机,车主点击链接默认打开网页版定位,如果有安装高德地图APP将在APP中打开并展示汽车当前位置 GPS模块可以使用多家的GPS模块,需要注意的是,当前程序对应的是GPS北斗双模芯片,故只解析 GNRMC数据,如果你使用GPS芯片则应改为GPRMC数据即可。 系统在初始化的时候会持续短鸣,每初始化成功一部分后将长鸣一声,如果持续短鸣很久(超过20分钟),建议通过串口助手查看系统输出的调试信息,系统串口默认输出从初始化开始的所有运行状态信息。 不过更建议你使用SIM868模块,集成GPS.GSM.GPRS,使用更加方便
recommend-type

基于tensorflow2.x卷积神经网络字符型验证码识别.zip

基于tensorflow2.x卷积神经网络字符型验证码识别 卷积神经网络(Convolutional Neural Networks, CNNs 或 ConvNets)是一类深度神经网络,特别擅长处理图像相关的机器学习和深度学习任务。它们的名称来源于网络中使用了一种叫做卷积的数学运算。以下是卷积神经网络的一些关键组件和特性: 卷积层(Convolutional Layer): 卷积层是CNN的核心组件。它们通过一组可学习的滤波器(或称为卷积核、卷积器)在输入图像(或上一层的输出特征图)上滑动来工作。 滤波器和图像之间的卷积操作生成输出特征图,该特征图反映了滤波器所捕捉的局部图像特性(如边缘、角点等)。 通过使用多个滤波器,卷积层可以提取输入图像中的多种特征。 激活函数(Activation Function): 在卷积操作之后,通常会应用一个激活函数(如ReLU、Sigmoid或tanh)来增加网络的非线性。 池化层(Pooling Layer): 池化层通常位于卷积层之后,用于降低特征图的维度(空间尺寸),减少计算量和参数数量,同时保持特征的空间层次结构。 常见的池化操作包括最大池化(Max Pooling)和平均池化(Average Pooling)。 全连接层(Fully Connected Layer): 在CNN的末端,通常会有几层全连接层(也称为密集层或线性层)。这些层中的每个神经元都与前一层的所有神经元连接。 全连接层通常用于对提取的特征进行分类或回归。 训练过程: CNN的训练过程与其他深度学习模型类似,通过反向传播算法和梯度下降(或其变种)来优化网络参数(如滤波器权重和偏置)。 训练数据通常被分为多个批次(mini-batches),并在每个批次上迭代更新网络参数。 应用: CNN在计算机视觉领域有着广泛的应用,包括图像分类、目标检测、图像分割、人脸识别等。 它们也已被扩展到处理其他类型的数据,如文本(通过卷积一维序列)和音频(通过卷积时间序列)。 随着深度学习技术的发展,卷积神经网络的结构和设计也在不断演变,出现了许多新的变体和改进,如残差网络(ResNet)、深度卷积生成对抗网络(DCGAN)等。
recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

实现实时数据湖架构:Kafka与Hive集成

![实现实时数据湖架构:Kafka与Hive集成](https://img-blog.csdnimg.cn/img_convert/10eb2e6972b3b6086286fc64c0b3ee41.jpeg) # 1. 实时数据湖架构概述** 实时数据湖是一种现代数据管理架构,它允许企业以低延迟的方式收集、存储和处理大量数据。与传统数据仓库不同,实时数据湖不依赖于预先定义的模式,而是采用灵活的架构,可以处理各种数据类型和格式。这种架构为企业提供了以下优势: - **实时洞察:**实时数据湖允许企业访问最新的数据,从而做出更明智的决策。 - **数据民主化:**实时数据湖使各种利益相关者都可
recommend-type

解答下列问题:S—>S;T|T;T—>a 构造任意项目集规范族,构造LR(0)分析表,并分析a;a

对于这个文法,我们可以构造以下项目集规范族: I0: S -> .S S -> .T T -> .a I1: S -> S. [$ T -> T. [$ I2: S -> T. I3: S -> S.;S S -> S.;T T -> T.;a 其中,点(.)表示已经被扫描过的符号,;$表示输入串的结束符号。 根据项目集规范族,我们可以构造出LR(0)分析表: 状态 | a | $ ---- | - | - I0 | s3| I1 | |acc I2 | | 其中s3表示移进到状态3,acc表示接受。在分析字符串a;a时,我们可以按照以下步骤进行
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

实现实时监控告警系统:Kafka与Grafana整合

![实现实时监控告警系统:Kafka与Grafana整合](https://imgconvert.csdnimg.cn/aHR0cHM6Ly9tbWJpei5xcGljLmNuL21tYml6X2pwZy9BVldpY3ladXVDbEZpY1pLWmw2bUVaWXFUcEdLT1VDdkxRSmQxZXB5R1lxaWNlUjA2c0hFek5Qc3FyRktudFF1VDMxQVl3QTRXV2lhSWFRMEFRc0I1cW1ZOGcvNjQw?x-oss-process=image/format,png) # 1.1 Kafka集群架构 Kafka集群由多个称为代理的服务器组成,这