R语言划分数据集代码set.seed(1) train_id = sample(1:nrow(data),0.85*nrow(data)) 加一些代码,让数据随机划分

时间: 2024-04-14 10:30:40 浏览: 174
你可以使用R语言中的`sample`函数来随机划分数据集。下面是一个完整的代码示例: ```R set.seed(1) train_id <- sample(1:nrow(data), 0.85 * nrow(data)) train_data <- data[train_id, ] test_data <- data[-train_id, ] ``` 在上述代码中,`set.seed(1)`设置了随机数种子,以确保每次运行代码时都得到相同的随机结果。`sample`函数用于生成一个随机样本,其参数包括要进行抽样的数据范围(1:nrow(data)表示从1到数据总行数),以及抽样的样本大小(0.85 * nrow(data)表示将数据集的85%作为训练集,剩余部分作为测试集)。 最后,将根据生成的随机样本索引将数据划分为训练集和测试集,分别存储在`train_data`和`test_data`中。
相关问题

R语言这代码什么意思 set.seed(123) train_ind <- sample(1:nrow(data), 0.8*nrow(data)) train_data <- data[train_...

这段 R 代码的作用是将数据集中的80%随机抽取作为训练集,剩下的20%作为测试集。 具体解释如下: - `set.seed(123)`:设定随机数种子,保证每次运行程序得到的随机数相同,以便结果的可重复性。 - `train_ind <- sample(1:nrow(data), 0.8*nrow(data))`:生成一个随机数序列train_ind,其中1:nrow(data)表示数据集的行数,0.8*nrow(data)表示训练集所占的比例。函数sample()从1:nrow(data)中随机取0.8*nrow(data)个数作为训练集的索引。 - `train_data <- data[train_ind,]`:将生成的随机数序列train_ind作为索引,从原始数据集data中抽取对应的行,即生成训练集train_data。 - 测试集可以通过以下代码生成:`test_data <- data[-train_ind,]`,其中"-"表示取反,即取除了train_ind之外的所有行。 需要注意的是,这里的data指的是一个数据框或矩阵,nrow()函数返回行数。

###Logistic ##数据集划分 set.seed(1) train_id=sample(1:nrow(data),0.7*nrow(data)) train=data[train_id,] test=data[-train_id,] write.csv(train,file = "train.csv") write.csv(test,file="tset.csv") ###logistics和列线图 anyNA(train) mydata <- train install.packages("rms") library(rms) library(Hmisc) attach(mydata) dd <- datadist(mydata) options(datadist='dd') fit0 <- lrm(outcom~BMI+fus+lym+mon+alt+ast+ldh+ na+crp+aptt+inr+sssj+pzsxj+mmzj+pmzj+xxbbhz +shmmzj ,data=mydata,x=T,y=T)#lasso回归中筛选出的变量 fit0 nom0 <- nomogram(fit0,fun=plogis,fun.at = c(.001,.01,.05,.5, .95, .99,.999), lp=T,funlabel="thrombus rate") plot(nom0) fit1 <- lrm(outcom ~ BMI+lym+fus +aptt+sssj+mmzj, data = mydata,x=T,y=T)#对于不显著的指标予以剔除 fit1 summary(fit1) ##nomogram nom1 <- nomogram(fit1, fun = plogis, fun.at = c(.001, .01, .05, .5, .95, .99, .999), lp = TRUE, funlabel = "thrombus rate") plot(nom1) ###predict预测并做ROC install.packages("rms") library(rms) install.packages("tidyverse") library(tidyverse) anyNA(train) fit1 gd <- predict(fit1, newdata = train, se.fit = FALSE, dispersion = NULL, terms = FALSE, na.action = na.pass) gd2 <- predict(fit1,newdata=test, se.fit=FALSE,dispersion=NULL,terms=NULL, na.action=na.pass)

根据您提供的代码,可能存在以下问题: 1. `fus` 变量可能被拼写错误,导致无法识别。建议检查变量名称是否正确。 2. 在 `lrm()` 函数中,`x=T` 和 `y=T` 参数是无效的。如果想要使用公式输入变量,可以使用 `formula` 参数,例如 `formula = outcom ~ .` 表示使用所有变量进行拟合。 3. 在 `predict()` 函数中,`dispersion=NULL` 参数也是无效的。如果需要计算标准误,可以设置 `se.fit = TRUE`。 4. 在 `predict()` 函数中,`terms=NULL` 参数也是无效的。如果需要返回预测的线性预测值,可以设置 `type = "lp"`。 下面是修改过后的代码示例: ``` ###Logistic ##数据集划分 set.seed(1) train_id <- sample(1:nrow(data), 0.7 * nrow(data)) train <- data[train_id,] test <- data[-train_id,] write.csv(train, file = "train.csv") write.csv(test, file = "test.csv") ###logistics和列线图 anyNA(train) mydata <- train install.packages("rms") library(rms) library(Hmisc) attach(mydata) dd <- datadist(mydata) options(datadist='dd') fit0 <- lrm(outcom ~ BMI + fus + lym + mon + alt + ast + ldh + na + crp + aptt + sssj + pzsxj + mmzj + pmzj + xxbbhz + shmmzj, data = mydata) #lasso回归中筛选出的变量 fit0 nom0 <- nomogram(fit0, fun = plogis, fun.at = c(.001, .01, .05, .5, .95, .99, .999), lp = TRUE, funlabel = "thrombus rate") plot(nom0) fit1 <- lrm(outcom ~ BMI + lym + fus + aptt + sssj + mmzj, data = mydata) #对于不显著的指标予以剔除 summary(fit1) ##nomogram nom1 <- nomogram(fit1, fun = plogis, fun.at = c(.001, .01, .05, .5, .95, .99, .999), lp = TRUE, funlabel = "thrombus rate") plot(nom1) ###predict预测并做ROC install.packages("tidyverse") library(tidyverse) anyNA(train) gd <- predict(fit1, newdata = train, se.fit = TRUE, type = "lp", na.action = na.pass) gd2 <- predict(fit1, newdata = test, se.fit = TRUE, type = "lp", na.action = na.pass) roc_obj <- roc(train$outcom, exp(gd)/(1 + exp(gd))) # 计算 ROC 曲线 plot(roc_obj) # 绘制 ROC 曲线 ``` 请注意,这里的 `gd` 和 `gd2` 变量存储的是线性预测值,需要使用 `exp(gd)/(1 + exp(gd))` 转换为预测的概率值,才能用于计算 ROC 曲线。
阅读全文

相关推荐

最新推荐

recommend-type

vb人事管理系统全套(源代码+论文+开题报告+实习报告)(2024zq).7z

1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于计算机科学与技术等相关专业,更为适合;
recommend-type

vb试题库自动组卷系统(源代码+论文)(2024nc).7z

1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于计算机科学与技术等相关专业,更为适合;
recommend-type

城市垃圾管理信息系统(含数据库,含转运查询与车辆轨迹功能,含源码与说明).zip

城市垃圾管理信息系统(含数据库,含转运查询与车辆轨迹功能,含源码与说明).zip 【资源说明】 1、该项目是团队成员近期最新开发,代码完整,资料齐全,含设计文档等 2、上传的项目源码经过严格测试,功能完善且能正常运行,请放心下载使用! 3、本项目适合计算机相关专业(人工智能、通信工程、自动化、电子信息、物联网等)的高校学生、教师、科研工作者、行业从业者下载使用,可借鉴学习,也可直接作为毕业设计、课程设计、作业、项目初期立项演示等,也适合小白学习进阶,遇到问题不懂就问,欢迎交流。 4、如果基础还行,可以在此代码基础上进行修改,以实现其他功能,也可直接用于毕设、课设、作业等。 5、不懂配置和运行,可远程教学 6、欢迎下载,沟通交流,互相学习,共同进步!
recommend-type

S7-PDIAG工具使用教程及技术资料下载指南

资源摘要信息:"s7upaadk_S7-PDIAG帮助" s7upaadk_S7-PDIAG帮助是针对西门子S7系列PLC(可编程逻辑控制器)进行诊断和维护的专业工具。S7-PDIAG是西门子提供的诊断软件包,能够帮助工程师和技术人员有效地检测和解决S7 PLC系统中出现的问题。它提供了一系列的诊断功能,包括但不限于错误诊断、性能分析、系统状态监控以及远程访问等。 S7-PDIAG软件广泛应用于自动化领域中,尤其在工业控制系统中扮演着重要角色。它支持多种型号的S7系列PLC,如S7-1200、S7-1500等,并且与TIA Portal(Totally Integrated Automation Portal)等自动化集成开发环境协同工作,提高了工程师的开发效率和系统维护的便捷性。 该压缩包文件包含两个关键文件,一个是“快速接线模块.pdf”,该文件可能提供了关于如何快速连接S7-PDIAG诊断工具的指导,例如如何正确配置硬件接线以及进行快速诊断测试的步骤。另一个文件是“s7upaadk_S7-PDIAG帮助.chm”,这是一个已编译的HTML帮助文件,它包含了详细的操作说明、故障排除指南、软件更新信息以及技术支持资源等。 了解S7-PDIAG及其相关工具的使用,对于任何负责西门子自动化系统维护的专业人士都是至关重要的。使用这款工具,工程师可以迅速定位问题所在,从而减少系统停机时间,确保生产的连续性和效率。 在实际操作中,S7-PDIAG工具能够与西门子的S7系列PLC进行通讯,通过读取和分析设备的诊断缓冲区信息,提供实时的系统性能参数。用户可以通过它监控PLC的运行状态,分析程序的执行流程,甚至远程访问PLC进行维护和升级。 另外,该帮助文件可能还提供了与其他产品的技术资料下载链接,这意味着用户可以通过S7-PDIAG获得一系列扩展支持。例如,用户可能需要下载与S7-PDIAG配套的软件更新或补丁,或者是需要更多高级功能的第三方工具。这些资源的下载能够进一步提升工程师解决复杂问题的能力。 在实践中,熟练掌握S7-PDIAG的使用技巧是提升西门子PLC系统维护效率的关键。这要求工程师不仅要有扎实的理论基础,还需要通过实践不断积累经验。此外,了解与S7-PDIAG相关的软件和硬件产品的技术文档,对确保自动化系统的稳定运行同样不可或缺。通过这些技术资料的学习,工程师能够更加深入地理解S7-PDIAG的高级功能,以及如何将这些功能应用到实际工作中去,从而提高整个生产线的自动化水平和生产效率。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

CC-LINK远程IO模块AJ65SBTB1现场应用指南:常见问题快速解决

# 摘要 CC-LINK远程IO模块作为一种工业通信技术,为自动化和控制系统提供了高效的数据交换和设备管理能力。本文首先概述了CC-LINK远程IO模块的基础知识,接着详细介绍了其安装与配置流程,包括硬件的物理连接和系统集成要求,以及软件的参数设置与优化。为应对潜在的故障问题,本文还提供了故障诊断与排除的方法,并探讨了故障解决的实践案例。在高级应用方面,文中讲述了如何进行编程与控制,以及如何实现系统扩展与集成。最后,本文强调了CC-LINK远程IO模块的维护与管理的重要性,并对未来技术发展趋势进行了展望。 # 关键字 CC-LINK远程IO模块;系统集成;故障诊断;性能优化;编程与控制;维护
recommend-type

python 画一个进度条

在Python中,你可以使用`tkinter`库来创建一个简单的进度条。以下是一个基本的例子,展示了如何使用`ttk`模块中的`Progressbar`来绘制进度条: ```python import tkinter as tk from tkinter import ttk # 创建主窗口 root = tk.Tk() # 设置进度条范围 max_value = 100 # 初始化进度条 progress_bar = ttk.Progressbar(root, orient='horizontal', length=200, mode='determinate', maximum=m
recommend-type

Nginx 1.19.0版本Windows服务器部署指南

资源摘要信息:"nginx-1.19.0-windows.zip" 1. Nginx概念及应用领域 Nginx(发音为“engine-x”)是一个高性能的HTTP和反向代理服务器,同时也是一款IMAP/POP3/SMTP服务器。它以开源的形式发布,在BSD许可证下运行,这使得它可以在遵守BSD协议的前提下自由地使用、修改和分发。Nginx特别适合于作为静态内容的服务器,也可以作为反向代理服务器用来负载均衡、HTTP缓存、Web和反向代理等多种功能。 2. Nginx的主要特点 Nginx的一个显著特点是它的轻量级设计,这意味着它占用的系统资源非常少,包括CPU和内存。这使得Nginx成为在物理资源有限的环境下(如虚拟主机和云服务)的理想选择。Nginx支持高并发,其内部采用的是多进程模型,以及高效的事件驱动架构,能够处理大量的并发连接,这一点在需要支持大量用户访问的网站中尤其重要。正因为这些特点,Nginx在中国大陆的许多大型网站中得到了应用,包括百度、京东、新浪、网易、腾讯、淘宝等,这些网站的高访问量正好需要Nginx来提供高效的处理。 3. Nginx的技术优势 Nginx的另一个技术优势是其配置的灵活性和简单性。Nginx的配置文件通常很小,结构清晰,易于理解,使得即使是初学者也能较快上手。它支持模块化的设计,可以根据需要加载不同的功能模块,提供了很高的可扩展性。此外,Nginx的稳定性和可靠性也得到了业界的认可,它可以在长时间运行中维持高效率和稳定性。 4. Nginx的版本信息 本次提供的资源是Nginx的1.19.0版本,该版本属于较新的稳定版。在版本迭代中,Nginx持续改进性能和功能,修复发现的问题,并添加新的特性。开发团队会根据实际的使用情况和用户反馈,定期更新和发布新版本,以保持Nginx在服务器软件领域的竞争力。 5. Nginx在Windows平台的应用 Nginx的Windows版本支持在Windows操作系统上运行。虽然Nginx最初是为类Unix系统设计的,但随着版本的更新,对Windows平台的支持也越来越完善。Windows版本的Nginx可以为Windows用户提供同样的高性能、高并发以及稳定性,使其可以构建跨平台的Web解决方案。同时,这也意味着开发者可以在开发环境中使用熟悉的Windows系统来测试和开发Nginx。 6. 压缩包文件名称解析 压缩包文件名称为"nginx-1.19.0-windows.zip",这表明了压缩包的内容是Nginx的Windows版本,且版本号为1.19.0。该文件包含了运行Nginx服务器所需的所有文件和配置,用户解压后即可进行安装和配置。文件名称简洁明了,有助于用户识别和确认版本信息,方便根据需要下载和使用。 7. Nginx在中国大陆的应用实例 Nginx在中国大陆的广泛使用,证明了其在实际部署中的卓越表现。这包括但不限于百度、京东、新浪、网易、腾讯、淘宝等大型互联网公司。这些网站的高访问量要求服务器能够处理数以百万计的并发请求,而Nginx正是凭借其出色的性能和稳定性满足了这一需求。这些大型网站的使用案例为Nginx带来了良好的口碑,同时也证明了Nginx作为一款服务器软件的领先地位。 总结以上信息,Nginx-1.19.0-windows.zip是一个适用于Windows操作系统的Nginx服务器软件压缩包,提供了高性能的Web服务和反向代理功能,并被广泛应用于中国大陆的大型互联网企业中。用户在使用该压缩包时,可以期待一个稳定、高效且易于配置的服务器环境。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

CC-LINK远程IO模块在环境监控中的应用:技术与案例探讨

![CC-LINK](https://www.mitsubishielectric.com/fa/products/cnt/plcnet/pmerit/cclink_ie/concept/img/main_img.jpg) # 摘要 CC-LINK远程IO模块作为一种先进的工业通信技术,在环境监控系统中具有广泛应用。本文首先概述了CC-LINK远程IO模块的基本概念及其在环境监控系统中的基础理论,包括硬件组成、软件架构及技术优势。随后,详细介绍了其在实时监控与远程控制、系统集成与配置、安全维护方面的具体实践应用。案例分析部分深入探讨了CC-LINK模块在不同环境监控场景中的应用效果与技术解决