void HT1621_SUCCESSIVE_DISPLAY(void) { uchar i,k,disp_data1; HT1621_CS=0; HT1621_CLK=0; HT1621_DATA=1; //WRITE MODE ID '101' _nop_(); HT1621_CLK=1; _nop_(); HT1621_CLK=0; HT1621_DATA=0; _nop_(); HT1621_CLK=1; _nop_(); HT1621_CLK=0; HT1621_DATA=1; _nop_(); HT1621_CLK=1; _nop_(); HT1621_CLK=0; for(i=0;i<6;i++) //SENDING START MEMORY ADDRESS [0x00] FOR SELECTING SEGMENT { HT1621_DATA=0; _nop_(); HT1621_CLK=1; _nop_(); HT1621_CLK=0; _nop_(); } for(i=0;i<7;i++) //SENDING SUCCESSIVE MEMORY CONTENT FOR DECIDING COMMENT'S STATE { disp_data1=Display_num_buffer[i]; for(k=0;k<8;k++) { if(disp_data1&0x01) HT1621_DATA=1; else HT1621_DATA=0; HT1621_CLK=1; _nop_(); _nop_(); HT1621_CLK=0; disp_data1>>=1; _nop_(); } } HT1621_CS=1; }

时间: 2024-04-12 16:33:55 浏览: 22
这段代码是一个名为`HT1621_SUCCESSIVE_DISPLAY`的函数,用于在HT1621 LCD上连续显示数据。 在函数内部,进行了一系列的操作来实现数据的连续显示: 1. 将片选引脚`HT1621_CS`置低表示选中HT1621 LCD。 2. 将时钟引脚`HT1621_CLK`置低。 3. 将数据引脚`HT1621_DATA`置为1,表示写模式ID '101'。 4. 进行一系列的时钟操作,以发送写模式ID '101'。 5. 循环6次,发送起始内存地址0x00,用于选择段。 6. 循环7次,发送连续的内存内容,用于决定显示的状态。 - 获取待显示的数据`disp_data1`。 - 循环8次,根据`disp_data1`的每一位,将数据写入HT1621 LCD。 7. 将片选引脚`HT1621_CS`置高,表示结束数据传输。 通过这些操作,可以将数据连续显示在HT1621 LCD上。 请注意,在这段代码中,涉及到了一些宏定义的引脚变量(如`HT1621_CS`、`HT1621_CLK`、`HT1621_DATA`),这些变量在之前的代码中有对应的管脚声明。 希望对您有所帮助!如果还有其他问题,请随时提问。
相关问题

void DELAY_TIMES(uchar time1); void SYSTEM_INITIAL(void); void HT1621_SEND_COMMAND(uchar command); void HT1621_WRITE_DATA(uchar write_addr,uchar write_data); void HT1621_CLEAR_MEMORY(void); void HT1621_SHOW_MEMORY(void); void HT1621_SUCCESSIVE_DISPLAY(void); void HT1621_INITIAL(void); void HT93LC46_EWEN(void) ; void HT93LC46_EWDS(void); void HT93LC46_WRITE_ONE_BYTE(uchar ht93lc46_addr,uchar ht93lc46_data); uchar HT93LC46_READ_ONE_BYTE(uchar ht93lc46_addr1);

这段代码是函数的声明部分,用来声明一些函数的原型。函数原型告诉编译器函数的名称、参数类型和返回类型,但没有具体的函数实现。 下面是对这些函数声明的简要说明: - `DELAY_TIMES(uchar time1)`: 延时函数,用于延时一定的时间,参数`time1`表示延时的时间(可能是以某种单位表示)。 - `SYSTEM_INITIAL(void)`: 系统初始化函数,用于初始化系统的各个组件和变量。 - `HT1621_SEND_COMMAND(uchar command)`: HT1621发送指令函数,用于向HT1621驱动芯片发送特定的指令,参数`command`表示要发送的指令。 - `HT1621_WRITE_DATA(uchar write_addr,uchar write_data)`: HT1621写入数据函数,用于向HT1621驱动芯片的特定地址写入数据,参数`write_addr`表示写入的地址,参数`write_data`表示要写入的数据。 - `HT1621_CLEAR_MEMORY(void)`: HT1621清除存储器函数,用于清除HT1621驱动芯片的存储器中的数据。 - `HT1621_SHOW_MEMORY(void)`: HT1621显示存储器函数,用于显示HT1621驱动芯片存储器中的数据。 - `HT1621_SUCCESSIVE_DISPLAY(void)`: HT1621连续显示函数,用于在HT1621驱动芯片上进行连续显示。 - `HT1621_INITIAL(void)`: HT1621初始化函数,用于初始化HT1621驱动芯片的各个寄存器和设置。 - `HT93LC46_EWEN(void)`: HT93LC46使能写入函数,用于使HT93LC46 EEPROM芯片进入写入模式。 - `HT93LC46_EWDS(void)`: HT93LC46禁止写入函数,用于禁止HT93LC46 EEPROM芯片的写入模式。 - `HT93LC46_WRITE_ONE_BYTE(uchar ht93lc46_addr,uchar ht93lc46_data)`: HT93LC46写入一个字节函数,用于向HT93LC46 EEPROM芯片的特定地址写入一个字节的数据。 - `HT93LC46_READ_ONE_BYTE(uchar ht93lc46_addr1)`: HT93LC46读取一个字节函数,用于从HT93LC46 EEPROM芯片的特定地址读取一个字节的数据。 这些函数的具体实现代码需要在其他地方查找。希望对您有所帮助!如果还有其他问题,请随时提问。

void manage_key3(void) //tare the weight function { if(Mode_flag==1) { if(percent_flag==1) { Percentindex=Percentindex+1; if(Percentindex==1) { Display_num_buffer[0]=0x00; Display_num_buffer[1]=0x00; Display_num_buffer[2]=0x00; Display_num_buffer[3]=Display_num_data[5]; Display_num_buffer[4]=0x00; Display_num_buffer[5]=0x80; Display_num_buffer[6]=0x00; HT1621_SUCCESSIVE_DISPLAY(); DELAY_TIMES(0xFF); DELAY_TIMES(0xFF); Scalevalue.float_one_4byte=finaldata.One_4byte-Mindata.One_4byte; Scalevalue.float_one_4byte=Scalevalue.float_one_4byte/50; } if(Percentindex==2) { Display_num_buffer[0]=0x00; Display_num_buffer[1]=0x00; Display_num_buffer[2]=Display_num_data[0]; Display_num_buffer[3]=Display_num_data[1]; Display_num_buffer[4]=0x00; Display_num_buffer[5]=0x80; Display_num_buffer[6]=0x00; HT1621_SUCCESSIVE_DISPLAY(); DELAY_TIMES(0xFF); DELAY_TIMES(0xFF); Scalevalue.float_one_4byte=finaldata.One_4byte-Mindata.One_4byte; Scalevalue.float_one_4byte=Scalevalue.float_one_4byte/100; } if(Percentindex==3) { Display_num_buffer[0]=0x00; Display_num_buffer[1]=0x00; Display_num_buffer[2]=Display_num_data[0]; Display_num_buffer[3]=Display_num_data[2]; Display_num_buffer[4]=0x00; Display_num_buffer[5]=0x80; Display_num_buffer[6]=0x00; HT1621_SUCCESSIVE_DISPLAY(); DELAY_TIMES(0xFF); DELAY_TIMES(0xFF); Scalevalue.float_one_4byte=finaldata.One_4byte-Mindata.One_4byte; Scalevalue.float_one_4byte=Scalevalue.float_one_4byte/200; }

这段代码是一个名为`manage_key3`的函数,用于进行零点校准(tare)。下面是函数的具体步骤: 1. 如果`Mode_flag`等于1,则执行以下步骤: - 如果`percent_flag`等于1,则执行以下步骤: - 将变量`Percentindex`加1。 - 如果`Percentindex`等于1,则执行以下步骤: - 设置显示缓冲区的值,用于显示特定的数字。 - 调用`HT1621_SUCCESSIVE_DISPLAY()`函数,将显示缓冲区的值显示在数码管上。 - 延时一段时间。 - 延时一段时间。 - 计算零点校准值:将变量`finaldata.One_4byte-Mindata.One_4byte`除以50,并将结果赋值给变量`Scalevalue.float_one_4byte`。 - 如果`Percentindex`等于2,则执行以下步骤: - 设置显示缓冲区的值,用于显示特定的数字。 - 调用`HT1621_SUCCESSIVE_DISPLAY()`函数,将显示缓冲区的值显示在数码管上。 - 延时一段时间。 - 延时一段时间。 - 计算零点校准值:将变量`finaldata.One_4byte-Mindata.One_4byte`除以100,并将结果赋值给变量`Scalevalue.float_one_4byte`。 - 如果`Percentindex`等于3,则执行以下步骤: - 设置显示缓冲区的值,用于显示特定的数字。 - 调用`HT1621_SUCCESSIVE_DISPLAY()`函数,将显示缓冲区的值显示在数码管上。 - 延时一段时间。 - 延时一段时间。 - 计算零点校准值:将变量`finaldata.One_4byte-Mindata.One_4byte`除以200,并将结果赋值给变量`Scalevalue.float_one_4byte`。 以上就是函数的主要逻辑。函数根据`Mode_flag`和`percent_flag`的值执行不同的操作,设置显示缓冲区的值以及计算零点校准值。根据`Percentindex`的值,选择不同的除数来计算零点校准值,并将结果存储到变量`Scalevalue.float_one_4byte`中。

相关推荐

if(Percentindex==1) { Display_num_buffer[0]=0x00; Display_num_buffer[1]=0x00; Display_num_buffer[2]=0x00; Display_num_buffer[3]=Display_num_data[5]; Display_num_buffer[4]=0x00; Display_num_buffer[5]=0x80; Display_num_buffer[6]=0x00; HT1621_SUCCESSIVE_DISPLAY(); DELAY_TIMES(0xFF); DELAY_TIMES(0xFF); Scalevalue.float_one_4byte=finaldata.One_4byte-Mindata.One_4byte; Scalevalue.float_one_4byte=Scalevalue.float_one_4byte/50; } if(Percentindex==2) { Display_num_buffer[0]=0x00; Display_num_buffer[1]=0x00; Display_num_buffer[2]=Display_num_data[0]; Display_num_buffer[3]=Display_num_data[1]; Display_num_buffer[4]=0x00; Display_num_buffer[5]=0x80; Display_num_buffer[6]=0x00; HT1621_SUCCESSIVE_DISPLAY(); DELAY_TIMES(0xFF); DELAY_TIMES(0xFF); Scalevalue.float_one_4byte=finaldata.One_4byte-Mindata.One_4byte; Scalevalue.float_one_4byte=Scalevalue.float_one_4byte/100; } if(Percentindex==3) { Display_num_buffer[0]=0x00; Display_num_buffer[1]=0x00; Display_num_buffer[2]=Display_num_data[0]; Display_num_buffer[3]=Display_num_data[2]; Display_num_buffer[4]=0x00; Display_num_buffer[5]=0x80; Display_num_buffer[6]=0x00; HT1621_SUCCESSIVE_DISPLAY(); DELAY_TIMES(0xFF); DELAY_TIMES(0xFF); Scalevalue.float_one_4byte=finaldata.One_4byte-Mindata.One_4byte; Scalevalue.float_one_4byte=Scalevalue.float_one_4byte/200; } if(Percentindex==4) { Display_num_buffer[0]=0x00; Display_num_buffer[1]=0x00; Display_num_buffer[2]=Display_num_data[0]; Display_num_buffer[3]=Display_num_data[5]; Display_num_buffer[4]=0x00; Display_num_buffer[5]=0x80; Display_num_buffer[6]=0x00; HT1621_SUCCESSIVE_DISPLAY(); DELAY_TIMES(0xFF); DELAY_TIMES(0xFF); Scalevalue.float_one_4byte=finaldata.One_4byte-Mindata.One_4byte; Scalevalue.float_one_4byte=Scalevalue.float_one_4byte/500; } if(Percentindex==5) { Display_num_buffer[0]=0x00; Display_num_buffer[1]=Display_num_data[0]; Display_num_buffer[2]=Display_num_data[0]; Display_num_buffer[3]=Display_num_data[1]; Display_num_buffer[4]=0x00; Display_num_buffer[5]=0x80; Display_num_buffer[6]=0x00; HT1621_SUCCESSIVE_DISPLAY(); DELAY_TIMES(0xFF); DELAY_TIMES(0xFF); Scalevalue.float_one_4byte=finaldata.One_4byte-Mindata.One_4byte; Scalevalue.float_one_4byte=Scalevalue.float_one_4byte/1000; Percentindex=0; }

void CS5532_INITIAL(void) { uchar CS5532_i; EX1=0; //IE=0x00; CS5532_A0=0; CS5532_A1=0; CS5532_SDO=1; CS5532_SDI=0; CS5532_SCLK=0; CS5532_CS=0; CS5532_SDI=1; _nop_(); for(CS5532_i=0;CS5532_i<135;CS5532_i++) //sending the 16 bytes sync1 and 1 byte sync0 { CS5532_SCLK=1; _nop_(); CS5532_SCLK=0; _nop_(); } CS5532_SDI=0; _nop_(); CS5532_SCLK=1; _nop_(); CS5532_SCLK=0; _nop_(); CS5532_CS=1; CS5532_WRITE_ONE_BYTE(0x03); //reset the cs5532 namely set RS=1 CS5532_WRITE_ONE_BYTE(0x22); CS5532_WRITE_ONE_BYTE(0x40); CS5532_WRITE_ONE_BYTE(0x00); CS5532_WRITE_ONE_BYTE(0x00); DELAY_TIMES(0xAA); //delay about 20ms CS5532_WRITE_ONE_BYTE(0x0B); //read the RV bit and set RV=0 CS5532_READ_ONE_BYTE(); CS5532_READ_ONE_BYTE(); CS5532_READ_ONE_BYTE(); CS5532_READ_ONE_BYTE(); DELAY_TIMES(0xAA); //delay about 20ms CS5532_WRITE_ONE_BYTE(0x03); //set the cs5532 system configuration register CS5532_WRITE_ONE_BYTE(0x02); CS5532_WRITE_ONE_BYTE(0x40); CS5532_WRITE_ONE_BYTE(0x00); CS5532_WRITE_ONE_BYTE(0x00); DELAY_TIMES(0xAA); //delay about 20ms CS5532_WRITE_ONE_BYTE(0x05); //set the cs5532 channel setup register CS5532_WRITE_ONE_BYTE(0x32); CS5532_WRITE_ONE_BYTE(0x40); //0x00 for bipolar preforming CS5532_WRITE_ONE_BYTE(0x32); //speed 7.5sps CS5532_WRITE_ONE_BYTE(0x40); DELAY_TIMES(0xAA); //delay about 20ms CS5532_WRITE_ONE_BYTE(0xC0); //cs5532 performing successive conversion CS5532_CS=0; CS5532_SDO=1; DELAY_TIMES(0xFF); DELAY_TIMES(0xFF); //DELAY_TIMES(0xFF); //PX1=1; //set the external interrupt 1 highest prior IT1=1; //set the external interrupt 1 edge trigger mode EX1=1; EA=1; //IE=0x84; //external interrupt 1 turn on }

逐行详细解释以下代码并加注释from tensorflow import keras import matplotlib.pyplot as plt base_image_path = keras.utils.get_file( "coast.jpg", origin="https://img-datasets.s3.amazonaws.com/coast.jpg") plt.axis("off") plt.imshow(keras.utils.load_img(base_image_path)) #instantiating a model from tensorflow.keras.applications import inception_v3 model = inception_v3.InceptionV3(weights='imagenet',include_top=False) #配置各层对DeepDream损失的贡献 layer_settings = { "mixed4": 1.0, "mixed5": 1.5, "mixed6": 2.0, "mixed7": 2.5, } outputs_dict = dict( [ (layer.name, layer.output) for layer in [model.get_layer(name) for name in layer_settings.keys()] ] ) feature_extractor = keras.Model(inputs=model.inputs, outputs=outputs_dict) #定义损失函数 import tensorflow as tf def compute_loss(input_image): features = feature_extractor(input_image) loss = tf.zeros(shape=()) for name in features.keys(): coeff = layer_settings[name] activation = features[name] loss += coeff * tf.reduce_mean(tf.square(activation[:, 2:-2, 2:-2, :])) return loss #梯度上升过程 @tf.function def gradient_ascent_step(image, learning_rate): with tf.GradientTape() as tape: tape.watch(image) loss = compute_loss(image) grads = tape.gradient(loss, image) grads = tf.math.l2_normalize(grads) image += learning_rate * grads return loss, image def gradient_ascent_loop(image, iterations, learning_rate, max_loss=None): for i in range(iterations): loss, image = gradient_ascent_step(image, learning_rate) if max_loss is not None and loss > max_loss: break print(f"... Loss value at step {i}: {loss:.2f}") return image #hyperparameters step = 20. num_octave = 3 octave_scale = 1.4 iterations = 30 max_loss = 15. #图像处理方面 import numpy as np def preprocess_image(image_path): img = keras.utils.load_img(image_path) img = keras.utils.img_to_array(img) img = np.expand_dims(img, axis=0) img = keras.applications.inception_v3.preprocess_input(img) return img def deprocess_image(img): img = img.reshape((img.shape[1], img.shape[2], 3)) img /= 2.0 img += 0.5 img *= 255. img = np.clip(img, 0, 255).astype("uint8") return img #在多个连续 上运行梯度上升 original_img = preprocess_image(base_image_path) original_shape = original_img.shape[1:3] successive_shapes = [original_shape] for i in range(1, num_octave): shape = tuple([int(dim / (octave_scale ** i)) for dim in original_shape]) successive_shapes.append(shape) successive_shapes = successive_shapes[::-1] shrunk_original_img = tf.image.resize(original_img, successive_shapes[0]) img = tf.identity(original_img) for i, shape in enumerate(successive_shapes): print(f"Processing octave {i} with shape {shape}") img = tf.image.resize(img, shape) img = gradient_ascent_loop( img, iterations=iterations, learning_rate=step, max_loss=max_loss ) upscaled_shrunk_original_img = tf.image.resize(shrunk_original_img, shape) same_size_original = tf.image.resize(original_img, shape) lost_detail = same_size_original - upscaled_shrunk_original_img img += lost_detail shrunk_original_img = tf.image.resize(original_img, shape) keras.utils.save_img("DeepDream.png", deprocess_image(img.numpy()))

最新推荐

recommend-type

ADS8689_cn.pdf

ADS8689是具有可编程双极输入范围的16位、高速、单电源、Successive Approximation Register (SAR) 类比数字转换器(ADC)。该器件具有高速度和高精度的特点,广泛应用于工业自动化、医疗电子、汽车电子、消费电子等...
recommend-type

2024年东南亚BCD功率集成电路市场深度研究及预测报告.pdf

东南亚位于我国倡导推进的“一带一路”海陆交汇地带,作为当今全球发展最为迅速的地区之一,近年来区域内生产总值实现了显著且稳定的增长。根据东盟主要经济体公布的最新数据,印度尼西亚2023年国内生产总值(GDP)增长5.05%;越南2023年经济增长5.05%;马来西亚2023年经济增速为3.7%;泰国2023年经济增长1.9%;新加坡2023年经济增长1.1%;柬埔寨2023年经济增速预计为5.6%。 东盟国家在“一带一路”沿线国家中的总体GDP经济规模、贸易总额与国外直接投资均为最大,因此有着举足轻重的地位和作用。当前,东盟与中国已互相成为双方最大的交易伙伴。中国-东盟贸易总额已从2013年的443亿元增长至 2023年合计超逾6.4万亿元,占中国外贸总值的15.4%。在过去20余年中,东盟国家不断在全球多变的格局里面临挑战并寻求机遇。2023东盟国家主要经济体受到国内消费、国外投资、货币政策、旅游业复苏、和大宗商品出口价企稳等方面的提振,经济显现出稳步增长态势和强韧性的潜能。 本调研报告旨在深度挖掘东南亚市场的增长潜力与发展机会,分析东南亚市场竞争态势、销售模式、客户偏好、整体市场营商环境,为国内企业出海开展业务提供客观参考意见。 本文核心内容: 市场空间:全球行业市场空间、东南亚市场发展空间。 竞争态势:全球份额,东南亚市场企业份额。 销售模式:东南亚市场销售模式、本地代理商 客户情况:东南亚本地客户及偏好分析 营商环境:东南亚营商环境分析 本文纳入的企业包括国外及印尼本土企业,以及相关上下游企业等,部分名单 QYResearch是全球知名的大型咨询公司,行业涵盖各高科技行业产业链细分市场,横跨如半导体产业链(半导体设备及零部件、半导体材料、集成电路、制造、封测、分立器件、传感器、光电器件)、光伏产业链(设备、硅料/硅片、电池片、组件、辅料支架、逆变器、电站终端)、新能源汽车产业链(动力电池及材料、电驱电控、汽车半导体/电子、整车、充电桩)、通信产业链(通信系统设备、终端设备、电子元器件、射频前端、光模块、4G/5G/6G、宽带、IoT、数字经济、AI)、先进材料产业链(金属材料、高分子材料、陶瓷材料、纳米材料等)、机械制造产业链(数控机床、工程机械、电气机械、3C自动化、工业机器人、激光、工控、无人机)、食品药品、医疗器械、农业等。邮箱:market@qyresearch.com
recommend-type

windows本地开发Maven配置文件

windows本地开发Maven配置文件 注意修改第55行 <localRepository>标签中的地址为自己的Maven仓库地址
recommend-type

分布式锁的感悟(redis,redisson,zk)

分布式锁的感悟(redis,redisson,zk)
recommend-type

2024年5月全国主要城市空气质量

2024年5月全国主要城市每天的空气质量包括aqi、CO、NO2、O3、PM2.5、PM10、SO2、主要空气污染物,数据格式是CSV
recommend-type

基于Springboot的医院信管系统

"基于Springboot的医院信管系统是一个利用现代信息技术和网络技术改进医院信息管理的创新项目。在信息化时代,传统的管理方式已经难以满足高效和便捷的需求,医院信管系统的出现正是适应了这一趋势。系统采用Java语言和B/S架构,即浏览器/服务器模式,结合MySQL作为后端数据库,旨在提升医院信息管理的效率。 项目开发过程遵循了标准的软件开发流程,包括市场调研以了解需求,需求分析以明确系统功能,概要设计和详细设计阶段用于规划系统架构和模块设计,编码则是将设计转化为实际的代码实现。系统的核心功能模块包括首页展示、个人中心、用户管理、医生管理、科室管理、挂号管理、取消挂号管理、问诊记录管理、病房管理、药房管理和管理员管理等,涵盖了医院运营的各个环节。 医院信管系统的优势主要体现在:快速的信息检索,通过输入相关信息能迅速获取结果;大量信息存储且保证安全,相较于纸质文件,系统节省空间和人力资源;此外,其在线特性使得信息更新和共享更为便捷。开发这个系统对于医院来说,不仅提高了管理效率,还降低了成本,符合现代社会对数字化转型的需求。 本文详细阐述了医院信管系统的发展背景、技术选择和开发流程,以及关键组件如Java语言和MySQL数据库的应用。最后,通过功能测试、单元测试和性能测试验证了系统的有效性,结果显示系统功能完整,性能稳定。这个基于Springboot的医院信管系统是一个实用且先进的解决方案,为医院的信息管理带来了显著的提升。"
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

字符串转Float性能调优:优化Python字符串转Float性能的技巧和工具

![字符串转Float性能调优:优化Python字符串转Float性能的技巧和工具](https://pic1.zhimg.com/80/v2-3fea10875a3656144a598a13c97bb84c_1440w.webp) # 1. 字符串转 Float 性能调优概述 字符串转 Float 是一个常见的操作,在数据处理和科学计算中经常遇到。然而,对于大规模数据集或性能要求较高的应用,字符串转 Float 的效率至关重要。本章概述了字符串转 Float 性能调优的必要性,并介绍了优化方法的分类。 ### 1.1 性能调优的必要性 字符串转 Float 的性能问题主要体现在以下方面
recommend-type

Error: Cannot find module 'gulp-uglify

当你遇到 "Error: Cannot find module 'gulp-uglify'" 这个错误时,它通常意味着Node.js在尝试运行一个依赖了 `gulp-uglify` 模块的Gulp任务时,找不到这个模块。`gulp-uglify` 是一个Gulp插件,用于压缩JavaScript代码以减少文件大小。 解决这个问题的步骤一般包括: 1. **检查安装**:确保你已经全局安装了Gulp(`npm install -g gulp`),然后在你的项目目录下安装 `gulp-uglify`(`npm install --save-dev gulp-uglify`)。 2. **配置
recommend-type

基于Springboot的冬奥会科普平台

"冬奥会科普平台的开发旨在利用现代信息技术,如Java编程语言和MySQL数据库,构建一个高效、安全的信息管理系统,以改善传统科普方式的不足。该平台采用B/S架构,提供包括首页、个人中心、用户管理、项目类型管理、项目管理、视频管理、论坛和系统管理等功能,以提升冬奥会科普的检索速度、信息存储能力和安全性。通过需求分析、设计、编码和测试等步骤,确保了平台的稳定性和功能性。" 在这个基于Springboot的冬奥会科普平台项目中,我们关注以下几个关键知识点: 1. **Springboot框架**: Springboot是Java开发中流行的应用框架,它简化了创建独立的、生产级别的基于Spring的应用程序。Springboot的特点在于其自动配置和起步依赖,使得开发者能快速搭建应用程序,并减少常规配置工作。 2. **B/S架构**: 浏览器/服务器模式(B/S)是一种客户端-服务器架构,用户通过浏览器访问服务器端的应用程序,降低了客户端的维护成本,提高了系统的可访问性。 3. **Java编程语言**: Java是这个项目的主要开发语言,具有跨平台性、面向对象、健壮性等特点,适合开发大型、分布式系统。 4. **MySQL数据库**: MySQL是一个开源的关系型数据库管理系统,因其高效、稳定和易于使用而广泛应用于Web应用程序,为平台提供数据存储和查询服务。 5. **需求分析**: 开发前的市场调研和需求分析是项目成功的关键,它帮助确定平台的功能需求,如用户管理、项目管理等,以便满足不同用户群体的需求。 6. **数据库设计**: 数据库设计包括概念设计、逻辑设计和物理设计,涉及表结构、字段定义、索引设计等,以支持平台的高效数据操作。 7. **模块化设计**: 平台功能模块化有助于代码组织和复用,包括首页模块、个人中心模块、管理系统模块等,每个模块负责特定的功能。 8. **软件开发流程**: 遵循传统的软件生命周期模型,包括市场调研、需求分析、概要设计、详细设计、编码、测试和维护,确保项目的质量和可维护性。 9. **功能测试、单元测试和性能测试**: 在开发过程中,通过这些测试确保平台功能的正确性、模块的独立性和系统的性能,以达到预期的用户体验。 10. **微信小程序、安卓源码**: 虽然主要描述中没有详细说明,但考虑到标签包含这些内容,可能平台还提供了移动端支持,如微信小程序和安卓应用,以便用户通过移动设备访问和交互。 这个基于Springboot的冬奥会科普平台项目结合了现代信息技术和软件工程的最佳实践,旨在通过信息化手段提高科普效率,为用户提供便捷、高效的科普信息管理服务。