random sampling算法
时间: 2023-09-28 20:09:34 浏览: 172
Random sampling算法是一种常见的随机采样方法,用于从一个给定的数据集中随机选择一个或多个样本。它是一种无偏采样方法,每个样本被选择的概率相等,且独立于其他样本的选择。
在随机采样中,每个样本都有相同的被选中的机会。这意味着每个样本都有相等的概率被选中,无论其在数据集中的位置或特征如何。这种方法简单高效,可以应用于各种机器学习和统计分析任务中。
在实现Random sampling算法时,可以使用随机数生成器来生成服从均匀分布的随机数。通过生成的随机数对样本进行编号,并根据随机数的大小来选择样本。这样可以确保每个样本都有相等的概率被选中。
总而言之,Random sampling算法是一种常用的随机选择方法,适用于各种数据分析和机器学习任务中需要随机选择样本的情况。
相关问题
python按指定概率抽样_概率加权的随机抽样 (Weighted Random Sampling) – A-Res 蓄水池算法...
好的,针对你的问题,我可以向你介绍一种实现概率加权随机抽样的方法——A-Res蓄水池算法。
该算法基于蓄水池算法,在加权随机抽样中实现了概率加权的随机抽样。它的实现思路如下:
1. 将待抽样的元素按照权重大小排序,权重越大的元素越靠前。
2. 依次遍历每个元素,并计算一个随机概率值,根据该概率值来决定是否选择该元素。
3. 对于第一个元素,直接以它的权重作为基准概率值,如果生成的随机数小于等于该概率值,则选择该元素;否则,不选择该元素。
4. 对于第二个元素,计算出一个新的基准概率值,该值为前一个元素的基准概率值加上当前元素的权重。如果生成的随机数小于等于新的基准概率值与前一个元素的基准概率值之差,则选择当前元素;否则,不选择当前元素。
5. 对于后续元素,依照相同的规则进行判断。
这样,我们就可以实现概率加权的随机抽样了。
希望这个方法能够帮到你。
根据查阅资料,python编写出MAB的 Softmax算法(或Epsilon-Greedy算法),BetaThompson sampling算法,UCB算法以及LinUCB算法。
以下是Python代码实现:
1. Softmax算法:
```python
import numpy as np
def softmax_action_selection(q_values, tau=1.0):
"""
Softmax action selection algorithm for multi-armed bandit problem.
:param q_values: numpy array of shape (num_actions,) representing the estimated action values
:param tau: float temperature parameter controlling the degree of exploration
:return: selected action
"""
probabilities = np.exp(q_values / tau) / np.sum(np.exp(q_values / tau))
action = np.random.choice(len(q_values), p=probabilities)
return action
```
2. Epsilon-Greedy算法:
```python
import numpy as np
def epsilon_greedy_action_selection(q_values, epsilon=0.1):
"""
Epsilon-greedy action selection algorithm for multi-armed bandit problem.
:param q_values: numpy array of shape (num_actions,) representing the estimated action values
:param epsilon: float parameter controlling the degree of exploration
:return: selected action
"""
if np.random.rand() < epsilon:
action = np.random.choice(len(q_values))
else:
action = np.argmax(q_values)
return action
```
3. BetaThompson sampling算法:
```python
import numpy as np
class BetaThompsonSampling:
def __init__(self, num_actions):
"""
Beta Thompson sampling algorithm for multi-armed bandit problem.
:param num_actions: number of actions (arms)
"""
self.alpha = np.ones(num_actions)
self.beta = np.ones(num_actions)
def action_selection(self):
"""
Select action according to the Beta distribution of each arm.
:return: selected action
"""
samples = np.random.beta(self.alpha, self.beta)
action = np.argmax(samples)
return action
def update(self, action, reward):
"""
Update the Beta distribution of the selected arm.
:param action: selected action
:param reward: observed reward
"""
if reward == 1:
self.alpha[action] += 1
else:
self.beta[action] += 1
```
4. UCB算法:
```python
import numpy as np
class UCB:
def __init__(self, num_actions, c=1.0):
"""
Upper Confidence Bound (UCB) algorithm for multi-armed bandit problem.
:param num_actions: number of actions (arms)
:param c: exploration parameter
"""
self.num_actions = num_actions
self.c = c
self.N = np.zeros(num_actions)
self.Q = np.zeros(num_actions)
def action_selection(self):
"""
Select action according to the UCB upper confidence bound.
:return: selected action
"""
upper_bounds = self.Q + self.c * np.sqrt(np.log(np.sum(self.N)) / (self.N + 1e-8))
action = np.argmax(upper_bounds)
return action
def update(self, action, reward):
"""
Update the estimated action value of the selected arm.
:param action: selected action
:param reward: observed reward
"""
self.N[action] += 1
self.Q[action] += (reward - self.Q[action]) / self.N[action]
```
5. LinUCB算法:
```python
import numpy as np
class LinUCB:
def __init__(self, num_actions, num_features, alpha=0.1):
"""
Linear Upper Confidence Bound (LinUCB) algorithm for multi-armed bandit problem.
:param num_actions: number of actions (arms)
:param num_features: number of features
:param alpha: exploration parameter
"""
self.num_actions = num_actions
self.num_features = num_features
self.alpha = alpha
self.A = np.array([np.eye(num_features) for _ in range(num_actions)])
self.b = np.zeros((num_actions, num_features))
self.theta = np.zeros((num_actions, num_features))
def action_selection(self, features):
"""
Select action according to the LinUCB upper confidence bound.
:param features: numpy array of shape (num_features,) representing the features of the context
:return: selected action
"""
upper_bounds = np.zeros(self.num_actions)
for i in range(self.num_actions):
A_inv = np.linalg.inv(self.A[i])
self.theta[i] = np.dot(A_inv, self.b[i])
upper_bounds[i] = np.dot(self.theta[i], features) + \
self.alpha * np.sqrt(np.dot(features.T, np.dot(A_inv, features)))
action = np.argmax(upper_bounds)
return action
def update(self, action, features, reward):
"""
Update the estimated parameters of the selected arm.
:param action: selected action
:param features: numpy array of shape (num_features,) representing the features of the context
:param reward: observed reward
"""
self.A[action] += np.outer(features, features)
self.b[action] += reward * features
```
阅读全文