smote算法python
时间: 2023-12-05 19:05:07 浏览: 98
SMOTE算法是一种合成少数过采样技术,用于解决不平衡数据集的问题。它通过合成新的少数类样本来平衡数据集,从而提高分类器的性能。
下面是一个使用Python实现SMOTE算法的示例代码:
```python
import random
import numpy as np
from sklearn.neighbors import NearestNeighbors
class Smote:
def __init__(self, samples, N, k):
self.n_samples, self.n_attrs = samples.shape
self.N = N
self.k = k
self.samples = samples
self.newindex = 0
def over_sampling(self):
N = int(self.N)
self.synthetic = np.zeros((self.n_samples * N, self.n_attrs))
neighbors = NearestNeighbors(n_neighbors=self.k).fit(self.samples)
# 对每个少数类样本均求其在所有少数类样本中的k近邻
for i in range(len(self.samples)):
nnarray = neighbors.kneighbors(self.samples[i].reshape(1,-1), return_distance=False)[0]
self._populate(N, i, nnarray)
return self.synthetic
# 为每个少数类样本选择k个最近邻中的N个,并生成N个合成样本
def _populate(self, N, i, nnarray):
for j in range(N):
nn = random.randint(0, self.k-1)
dif = self.samples[nnarray[nn]] - self.samples[i]
gap = random.random()
self.synthetic[self.newindex] = self.samples[i] + gap * dif
self.newindex += 1
```
阅读全文