smote算法的使用python代码
时间: 2023-12-15 08:05:59 浏览: 129
SMOTE (Synthetic Minority Over-sampling Technique) 是一种解决不平衡数据集分类问题的方法,它通过生成合成样本来增加少数类样本,从而平衡数据集。以下是一个使用 Python 实现 SMOTE 算法的例子:
```python
from imblearn.over_sampling import SMOTE
from sklearn.datasets import make_classification
from collections import Counter
# 创建一个不平衡的数据集
X, y = make_classification(n_classes=2, class_sep=2,
weights=[0.1, 0.9], n_informative=3,
n_redundant=1, flip_y=0, n_features=20,
n_clusters_per_class=1, n_samples=1000,
random_state=10)
print('Original dataset shape %s' % Counter(y))
# 使用 SMOTE 进行样本平衡
sm = SMOTE(random_state=42)
X_res, y_res = sm.fit_resample(X, y)
print('Resampled dataset shape %s' % Counter(y_res))
```
在上面的代码中,我们使用了 imblearn 库中的 SMOTE 类来平衡数据集。首先,我们创建了一个不平衡的数据集,其中少数类样本的权重为 0.1,多数类样本的权重为 0.9。然后,我们使用 SMOTE 进行样本平衡,最后输出平衡后的数据集形状。
阅读全文
相关推荐
![-](https://img-home.csdnimg.cn/images/20241231045053.png)
![-](https://img-home.csdnimg.cn/images/20241231045053.png)
![-](https://img-home.csdnimg.cn/images/20241231045053.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![zip](https://img-home.csdnimg.cn/images/20241231045053.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![-](https://img-home.csdnimg.cn/images/20241231044955.png)
![-](https://img-home.csdnimg.cn/images/20241231044955.png)