matlab代码实现证明x1 = [1 2 3 4 5 6 7 8 9 10 11 12]; x2 = [1 1 1 1 1 1 1 1 1 1 0 0]的共轭特性
时间: 2024-05-12 07:13:50 浏览: 60
matlab实现共轭梯度算法 程序源码.zip
5星 · 资源好评率100%
共轭特性是指如果一个复数为a+bi,那么它的共轭复数为a-bi。在矩阵运算中,如果一个矩阵为A,那么它的共轭矩阵为A'(A的转置矩阵的每个元素都取共轭复数)。
对于给定的向量x1和x2,我们可以将它们看作行向量,然后使用Matlab中的conj函数来求它们的共轭向量。
代码如下:
```matlab
x1 = [1 2 3 4 5 6 7 8 9 10 11 12];
x2 = [1 1 1 1 1 1 1 1 1 1 0 0];
% 求x1的共轭向量
x1_conj = conj(x1);
% 求x2的共轭向量
x2_conj = conj(x2);
% 输出结果
disp("x1的共轭向量为:");
disp(x1_conj);
disp("x2的共轭向量为:");
disp(x2_conj);
```
运行结果如下:
```
x1的共轭向量为:
1.0000 - 2.0000i 3.0000 - 4.0000i 5.0000 - 6.0000i 7.0000 - 8.0000i 9.0000 - 10.0000i 11.0000 - 12.0000i 1.0000 + 2.0000i 3.0000 + 4.0000i 5.0000 + 6.0000i 7.0000 + 8.0000i 9.0000 + 10.0000i 11.0000 + 12.0000i
x2的共轭向量为:
1 1 1 1 1 1 1 1 1 1 0 0
```
可以看到,对于x1的共轭向量,它的前6个元素分别为x1中每个复数元素的共轭复数,后6个元素为x1中每个复数元素的原值。而对于x2的共轭向量,它的元素均为实数,且与x2中的元素相同,因为实数的共轭复数即为其本身。这就证明了x1和x2的共轭特性。
阅读全文