波士顿房价预测(随机森林和线性回归)详情: 1.线性回归和随机森林建模 from sklearn.ensemble import RandomForestRegressor from sklearn.linear_model import LinearRegression 2.预测房价并绘制对比图

时间: 2024-02-01 18:13:19 浏览: 23
好的,下面是波士顿房价预测的代码: ```python # 导入相关库 import pandas as pd from sklearn.datasets import load_boston from sklearn.model_selection import train_test_split from sklearn.ensemble import RandomForestRegressor from sklearn.linear_model import LinearRegression import matplotlib.pyplot as plt # 加载数据集 boston = load_boston() df = pd.DataFrame(boston.data, columns=boston.feature_names) df['PRICE'] = boston.target # 划分数据集 X = df.drop('PRICE', axis=1) y = df['PRICE'] X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42) # 线性回归建模 lr = LinearRegression() lr.fit(X_train, y_train) # 随机森林建模 rf = RandomForestRegressor(n_estimators=100, random_state=42) rf.fit(X_train, y_train) # 预测房价 lr_pred = lr.predict(X_test) rf_pred = rf.predict(X_test) # 绘制对比图 plt.figure(figsize=(10, 5)) plt.plot(y_test.values, label='True') plt.plot(lr_pred, label='Linear Regression') plt.plot(rf_pred, label='Random Forest') plt.legend() plt.show() ``` 这段代码的作用是: 1. 加载波士顿房价数据集,并将其转化为 DataFrame 格式。 2. 将数据集划分为训练集和测试集。 3. 使用线性回归和随机森林分别建立模型。 4. 对测试集进行预测,并绘制出真实房价和两个模型的预测房价的对比图。 如果你想要运行这段代码,需要先安装 scikit-learn 和 matplotlib 库。

相关推荐

index0 = numerical_corr.sort_values(ascending=False).index 36 print(train_data_scaler[index0].corr('spearman')) 37 38 new_numerical=['V0', 'V2', 'V3', 'V4', 'V5', 'V6', 'V10','V11', 39 'V13', 'V15', 'V16', 'V18', 'V19', 'V20', 'V22','V24','V30', 'V31', 'V37'] 40 X=np.matrix(train_data_scaler[new_numerical]) 41 VIF_list=[variance_inflation_factor(X, i) for i in range(X.shape[1])] 42 VIF_list 43 44 45 pca = PCA(n_components=0.9) 46 new_train_pca_90 = pca.fit_transform(train_data_scaler.iloc[:,0:-1]) 47 new_test_pca_90 = pca.transform(test_data_scaler) 48 new_train_pca_90 = pd.DataFrame(new_train_pca_90) 49 new_test_pca_90 = pd.DataFrame(new_test_pca_90) 50 new_train_pca_90['target'] = train_data_scaler['target'] 51 new_train_pca_90.describe() 52 53 pca = PCA(n_components=0.95) 54 new_train_pca_16 = pca.fit_transform(train_data_scaler.iloc[:,0:-1]) 55 new_test_pca_16 = pca.transform(test_data_scaler) 56 new_train_pca_16 = pd.DataFrame(new_train_pca_16) 57 new_test_pca_16 = pd.DataFrame(new_test_pca_16) 58 new_train_pca_16['target'] = train_data_scaler['target'] 59 new_train_pca_16.describe() 60 61 from sklearn.ensemble import GradientBoostingRegressor 62 63 from sklearn.model_selection import learning_curve 64 from sklearn.model_selection import ShuffleSplit 65 66 new_train_pca_16 = new_train_pca_16.fillna(0) 67 train = new_train_pca_16[new_test_pca_16.columns] 68 target = new_train_pca_16['target'] 69 70 train_data,test_data,train_target,test_target=train_test_split(train,target,test_size=0.2,random_state=0) 71 72 clf = LinearRegression() 73 clf.fit(train_data, train_target) 74 score = mean_squared_error(test_target, clf.predict(test_data)) 75 print("LinearRegression: ", score) 76 77 train_score = [] 78 test_score = []解释每一句代码的意思

最新推荐

recommend-type

基于TC72(SPI接口)温度传感器、STM32F103C8T6、LCD1602、FREERTOS的温度采集proteus仿真

spi
recommend-type

ehcache-core-2.6.9.jar

javaee/javaweb常用jar包,亲测可用,导入到java工程中即可使用
recommend-type

netty-transport-native-unix-common-4.1.51.Final.jar

javaEE javaweb常用jar包 , 亲测可用,下载后导入到java工程中使用。
recommend-type

node-v6.14.4-headers.tar.xz

Node.js,简称Node,是一个开源且跨平台的JavaScript运行时环境,它允许在浏览器外运行JavaScript代码。Node.js于2009年由Ryan Dahl创立,旨在创建高性能的Web服务器和网络应用程序。它基于Google Chrome的V8 JavaScript引擎,可以在Windows、Linux、Unix、Mac OS X等操作系统上运行。 Node.js的特点之一是事件驱动和非阻塞I/O模型,这使得它非常适合处理大量并发连接,从而在构建实时应用程序如在线游戏、聊天应用以及实时通讯服务时表现卓越。此外,Node.js使用了模块化的架构,通过npm(Node package manager,Node包管理器),社区成员可以共享和复用代码,极大地促进了Node.js生态系统的发展和扩张。 Node.js不仅用于服务器端开发。随着技术的发展,它也被用于构建工具链、开发桌面应用程序、物联网设备等。Node.js能够处理文件系统、操作数据库、处理网络请求等,因此,开发者可以用JavaScript编写全栈应用程序,这一点大大提高了开发效率和便捷性。 在实践中,许多大型企业和组织已经采用Node.js作为其Web应用程序的开发平台,如Netflix、PayPal和Walmart等。它们利用Node.js提高了应用性能,简化了开发流程,并且能更快地响应市场需求。
recommend-type

node-v10.8.0-headers.tar.xz

Node.js,简称Node,是一个开源且跨平台的JavaScript运行时环境,它允许在浏览器外运行JavaScript代码。Node.js于2009年由Ryan Dahl创立,旨在创建高性能的Web服务器和网络应用程序。它基于Google Chrome的V8 JavaScript引擎,可以在Windows、Linux、Unix、Mac OS X等操作系统上运行。 Node.js的特点之一是事件驱动和非阻塞I/O模型,这使得它非常适合处理大量并发连接,从而在构建实时应用程序如在线游戏、聊天应用以及实时通讯服务时表现卓越。此外,Node.js使用了模块化的架构,通过npm(Node package manager,Node包管理器),社区成员可以共享和复用代码,极大地促进了Node.js生态系统的发展和扩张。 Node.js不仅用于服务器端开发。随着技术的发展,它也被用于构建工具链、开发桌面应用程序、物联网设备等。Node.js能够处理文件系统、操作数据库、处理网络请求等,因此,开发者可以用JavaScript编写全栈应用程序,这一点大大提高了开发效率和便捷性。 在实践中,许多大型企业和组织已经采用Node.js作为其Web应用程序的开发平台,如Netflix、PayPal和Walmart等。它们利用Node.js提高了应用性能,简化了开发流程,并且能更快地响应市场需求。
recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【实战演练】增量式PID的simulink仿真实现

# 2.1 Simulink仿真环境简介 Simulink是MATLAB中用于建模、仿真和分析动态系统的图形化环境。它提供了一个直观的用户界面,允许用户使用块和连接线来创建系统模型。Simulink模型由以下元素组成: - **子系统:**将复杂系统分解成更小的、可管理的模块。 - **块:**代表系统中的组件,如传感器、执行器和控制器。 - **连接线:**表示信号在块之间的流动。 Simulink仿真环境提供了广泛的块库,涵盖了各种工程学科,包括控制系统、电子和机械工程。它还支持用户自定义块的创建,以满足特定仿真需求。 # 2. Simulink仿真环境的搭建和建模 ### 2.
recommend-type

训练集和测试集的准确率都99%,但是预测效果不好

即使训练集和测试集的准确率都很高,但是在实际的预测中表现不佳,可能会有以下几个原因: 1. 数据质量问题:模型训练和测试的数据可能存在问题,比如数据标签错误、数据集采样不均衡、数据集中存在异常值等问题,这些问题可能会导致模型在实际预测中表现不佳。 2. 特征工程问题:模型的特征工程可能存在问题,导致模型无法很好地捕捉数据的特征,从而影响预测效果。 3. 模型选择问题:模型的选择可能不合适,比如选择的模型太简单,无法很好地拟合数据,或者选择的模型太复杂,导致过拟合等问题。 4. 超参数调整问题:模型的超参数可能没有调整到最佳状态,需要进行调整。 针对以上可能的原因,可以采取相应的措施进
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。