以波士顿房价预测为例,编写程序,分别用岭回归、神经网络、支持向量机方法建立房价预测模型,涵盖完整的数据建模步骤,从预测误差(MSE和MAE)和决定系数(R2)对比不同模型的预测性能,并绘制不同模型预测结果和真实结果的对比曲线图
时间: 2024-04-19 18:25:20 浏览: 183
您好!对于波士顿房价预测任务,我可以为您提供一个示例程序来实现您所需的功能。请注意,由于平台限制,我无法直接绘制图形,但我将为您提供代码来计算和比较不同模型的性能指标。
首先,我们需要导入所需的库和数据集。以下是一个基本的代码框架,您可以根据需要进行修改和扩展:
```python
import numpy as np
import pandas as pd
from sklearn.datasets import load_boston
from sklearn.model_selection import train_test_split
from sklearn.linear_model import Ridge
from sklearn.neural_network import MLPRegressor
from sklearn.svm import SVR
from sklearn.metrics import mean_squared_error, mean_absolute_error, r2_score
import matplotlib.pyplot as plt
# 加载波士顿房价数据集
boston = load_boston()
X = boston.data
y = boston.target
# 划分训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
# 岭回归模型
ridge = Ridge()
ridge.fit(X_train, y_train)
ridge_pred = ridge.predict(X_test)
# 神经网络模型
mlp = MLPRegressor()
mlp.fit(X_train, y_train)
mlp_pred = mlp.predict(X_test)
# 支持向量机模型
svm = SVR()
svm.fit(X_train, y_train)
svm_pred = svm.predict(X_test)
# 计算性能指标
ridge_mse = mean_squared_error(y_test, ridge_pred)
ridge_mae = mean_absolute_error(y_test, ridge_pred)
ridge_r2 = r2_score(y_test, ridge_pred)
mlp_mse = mean_squared_error(y_test, mlp_pred)
mlp_mae = mean_absolute_error(y_test, mlp_pred)
mlp_r2 = r2_score(y_test, mlp_pred)
svm_mse = mean_squared_error(y_test, svm_pred)
svm_mae = mean_absolute_error(y_test, svm_pred)
svm_r2 = r2_score(y_test, svm_pred)
# 打印性能指标
print("Ridge Regression:")
print("MSE:", ridge_mse)
print("MAE:", ridge_mae)
print("R2 Score:", ridge_r2)
print("\nNeural Network:")
print("MSE:", mlp_mse)
print("MAE:", mlp_mae)
print("R2 Score:", mlp_r2)
print("\nSupport Vector Machine:")
print("MSE:", svm_mse)
print("MAE:", svm_mae)
print("R2 Score:", svm_r2)
# 绘制预测结果和真实结果对比曲线图
plt.figure(figsize=(10, 6))
plt.plot(y_test, label='True')
plt.plot(ridge_pred, label='Ridge')
plt.plot(mlp_pred, label='Neural Network')
plt.plot(svm_pred, label='Support Vector Machine')
plt.xlabel('Samples')
plt.ylabel('House Price')
plt.legend()
plt.show()
```
上述代码使用了岭回归(Ridge Regression)、神经网络(Neural Network)和支持向量机(Support Vector Machine)三种模型进行房价预测,并计算了每个模型的均方误差(MSE)、平均绝对误差(MAE)和决定系数(R2)指标。最后,使用 matplotlib 库绘制了预测结果和真实结果的对比曲线图。
您可以根据需要进一步优化模型的参数、尝试其他回归算法,并对结果进行分析和比较。希望对您有所帮助!
阅读全文