为什么输出entropy为NAN
时间: 2024-05-23 13:13:22 浏览: 182
解决pytorch 交叉熵损失输出为负数的问题
在机器学习中,当输出entropy为NaN时,通常是因为存在某些数据值为0,导致了计算log时出现了错误。这种情况通常发生在处理概率分布的时候。
为了解决这个问题,你可以检查你的代码,确保概率分布中没有值为0,如果有的话,可以将这些值替换为一个非零值,例如使用平滑技术(如Laplace平滑)或者添加一个很小的正数以避免计算错误。此外,你还可以使用NumPy的`isinf`和`isnan`函数来查看是否存在无穷大或NaN的值。
阅读全文