from sklearn.model_selection import cross_val_score import numpy as np gs = GridSearchCV(estimator=pipe_svc, param_grid=param_grid, scoring='accuracy', cv=3) scores = cross_val_score(gs, X_train, y_train, scoring='accuracy', cv=5) print('CV accuracy: %.3f +/- %.3f' % (np.mean(scores), np.std(scores)))
时间: 2024-02-14 11:08:34 浏览: 102
这段代码是使用scikit-learn中的GridSearchCV和cross_val_score函数进行模型训练和评估的。GridSearchCV是用于参数调优的函数,通过传入一个参数空间param_grid和待调优的模型estimator来进行交叉验证,返回最佳参数组合。cross_val_score函数则是用于模型评估的函数,通过传入模型、训练数据和评估指标来进行交叉验证并返回模型在测试集上的评估结果。在这段代码中,使用了5折交叉验证进行模型评估,输出了平均准确率和标准差。
相关问题
优化这段代码 for j in n_components: estimator = PCA(n_components=j,random_state=42) pca_X_train = estimator.fit_transform(X_standard) pca_X_test = estimator.transform(X_standard_test) cvx = StratifiedKFold(n_splits=5, shuffle=True, random_state=42) cost = [-5, -3, -1, 1, 3, 5, 7, 9, 11, 13, 15] gam = [3, 1, -1, -3, -5, -7, -9, -11, -13, -15] parameters =[{'kernel': ['rbf'], 'C': [2x for x in cost],'gamma':[2x for x in gam]}] svc_grid_search=GridSearchCV(estimator=SVC(random_state=42), param_grid=parameters,cv=cvx,scoring=scoring,verbose=0) svc_grid_search.fit(pca_X_train, train_y) param_grid = {'penalty':['l1', 'l2'], "C":[0.00001,0.0001,0.001, 0.01, 0.1, 1, 10, 100, 1000], "solver":["newton-cg", "lbfgs","liblinear","sag","saga"] # "algorithm":['auto', 'ball_tree', 'kd_tree', 'brute'] } LR_grid = LogisticRegression(max_iter=1000, random_state=42) LR_grid_search = GridSearchCV(LR_grid, param_grid=param_grid, cv=cvx ,scoring=scoring,n_jobs=10,verbose=0) LR_grid_search.fit(pca_X_train, train_y) estimators = [ ('lr', LR_grid_search.best_estimator_), ('svc', svc_grid_search.best_estimator_), ] clf = StackingClassifier(estimators=estimators, final_estimator=LinearSVC(C=5, random_state=42),n_jobs=10,verbose=0) clf.fit(pca_X_train, train_y) estimators = [ ('lr', LR_grid_search.best_estimator_), ('svc', svc_grid_search.best_estimator_), ] param_grid = {'final_estimator':[LogisticRegression(C=0.00001),LogisticRegression(C=0.0001), LogisticRegression(C=0.001),LogisticRegression(C=0.01), LogisticRegression(C=0.1),LogisticRegression(C=1), LogisticRegression(C=10),LogisticRegression(C=100), LogisticRegression(C=1000)]} Stacking_grid =StackingClassifier(estimators=estimators,) Stacking_grid_search = GridSearchCV(Stacking_grid, param_grid=param_grid, cv=cvx, scoring=scoring,n_jobs=10,verbose=0) Stacking_grid_search.fit(pca_X_train, train_y) var = Stacking_grid_search.best_estimator_ train_pre_y = cross_val_predict(Stacking_grid_search.best_estimator_, pca_X_train,train_y, cv=cvx) train_res1=get_measures_gridloo(train_y,train_pre_y) test_pre_y = Stacking_grid_search.predict(pca_X_test) test_res1=get_measures_gridloo(test_y,test_pre_y) best_pca_train_aucs.append(train_res1.loc[:,"AUC"]) best_pca_test_aucs.append(test_res1.loc[:,"AUC"]) best_pca_train_scores.append(train_res1) best_pca_test_scores.append(test_res1) train_aucs.append(np.max(best_pca_train_aucs)) test_aucs.append(best_pca_test_aucs[np.argmax(best_pca_train_aucs)].item()) train_scores.append(best_pca_train_scores[np.argmax(best_pca_train_aucs)]) test_scores.append(best_pca_test_scores[np.argmax(best_pca_train_aucs)]) pca_comp.append(n_components[np.argmax(best_pca_train_aucs)]) print("n_components:") print(n_components[np.argmax(best_pca_train_aucs)])
优化这段代码的几个方面:
1. 并行化:在进行网格搜索时,可以将n_jobs参数设置为-1,以利用所有可用的CPU核心进行并行计算,加快运行速度。
2. 提前定义参数字典:将参数字典定义在循环之外,避免在每次循环中重新定义参数。
3. 减少重复计算:在进行交叉验证和预测时,可以将最佳模型保存起来,避免重复计算。
4. 使用更高效的算法:可以考虑使用更高效的算法或模型来替代原有的模型,以提高性能和效率。
下面是优化后的代码示例:
```python
from sklearn.model_selection import GridSearchCV, StratifiedKFold, cross_val_predict
from sklearn.decomposition import PCA
from sklearn.svm import SVC
from sklearn.linear_model import LogisticRegression
from sklearn.ensemble import StackingClassifier
from sklearn.svm import LinearSVC
import numpy as np
# 定义参数字典
param_grid_svc = {'kernel': ['rbf'], 'C': [2 * x for x in cost], 'gamma': [2 * x for x in gam]}
param_grid_lr = {'penalty': ['l1', 'l2'],
"C": [0.00001, 0.0001, 0.001, 0.01, 0.1, 1, 10, 100, 1000],
"solver": ["newton-cg", "lbfgs", "liblinear", "sag", "saga"]}
param_grid_stacking = {'final_estimator': [LogisticRegression(C=10 ** i) for i in range(-5, 4)]}
best_pca_train_aucs = []
best_pca_test_aucs = []
best_pca_train_scores = []
best_pca_test_scores = []
train_aucs = []
test_aucs = []
train_scores = []
test_scores = []
pca_comp = []
for j in n_components:
# PCA
estimator = PCA(n_components=j, random_state=42)
pca_X_train = estimator.fit_transform(X_standard)
pca_X_test = estimator.transform(X_standard_test)
# SVC模型训练
cvx = StratifiedKFold(n_splits=5, shuffle=True, random_state=42)
svc_grid_search = GridSearchCV(estimator=SVC(random_state=42), param_grid=param_grid_svc, cv=cvx, scoring=scoring,
verbose=0)
svc_grid_search.fit(pca_X_train, train_y)
# Logistic Regression模型训练
LR_grid = LogisticRegression(max_iter=1000, random_state=42)
LR_grid_search = GridSearchCV(LR_grid, param_grid=param_grid_lr, cv=cvx, scoring=scoring, n_jobs=-1, verbose=0)
LR_grid_search.fit(pca_X_train, train_y)
# Stacking模型训练
estimators = [
('lr', LR_grid_search.best_estimator_),
('svc', svc_grid_search.best_estimator_),
]
clf = StackingClassifier(estimators=estimators,
final_estimator=LinearSVC(C=5, random_state=42), n_jobs=-1, verbose=0)
clf.fit(pca_X_train, train_y)
# Stacking模型参数搜索
estimators = [
('lr', LR_grid_search.best_estimator_),
('svc', svc_grid_search.best_estimator_),
]
Stacking_grid = StackingClassifier(estimators=estimators,)
Stacking_grid_search = GridSearchCV(Stacking_grid, param_grid=param_grid_stacking, cv=cvx,
scoring=scoring, n_jobs=-1, verbose=0)
Stacking_grid_search.fit(pca_X_train, train_y)
var = Stacking_grid_search.best_estimator_
# 计算AUC和分数
train_pre_y = cross_val_predict(Stacking_grid_search.best_estimator_, pca_X_train, train_y, cv=cvx)
train_res1 = get_measures_gridloo(train_y, train_pre_y)
test_pre_y = Stacking_grid_search.predict(pca_X_test)
test_res1 = get_measures_gridloo(test_y, test_pre_y)
# 保存结果
best_pca_train_aucs.append(train_res1.loc[:, "AUC"])
best_pca_test_aucs.append(test_res1.loc[:, "AUC"])
best_pca_train_scores.append(train_res1)
best_pca_test_scores.append(test_res1)
train_aucs.append(np.max(best_pca_train_aucs))
test_aucs.append(best_pca_test_aucs[np.argmax(best_pca_train_aucs)].item())
train_scores.append(best_pca_train_scores[np.argmax(best_pca_train_aucs)])
test_scores.append(best_pca_test_scores[np.argmax(best_pca_train_aucs)])
pca_comp.append(n_components[np.argmax(best_pca_train_aucs)])
print("n_components:")
print(n_components[np.argmax(best_pca_train_aucs)])
```
请注意,这只是对代码的一种优化方法,具体的改进策略可能因具体问题而异。
使用sklearn预测走势_使用python+sklearn实现stacking方法来组合预测
Stacking是一种集成学习方法,可以将多个模型的预测结果结合起来,得到更好的预测效果。在使用Python和scikit-learn库实现Stacking方法时,需要进行以下步骤:
1. 导入必要的库和数据集。
```python
import numpy as np
import pandas as pd
from sklearn.datasets import load_iris
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LogisticRegression
from sklearn.neighbors import KNeighborsClassifier
from sklearn.tree import DecisionTreeClassifier
from sklearn.ensemble import RandomForestClassifier
from sklearn.svm import SVC
from sklearn.metrics import accuracy_score
from sklearn.model_selection import cross_val_score, KFold
from sklearn.model_selection import GridSearchCV
from mlxtend.classifier import StackingClassifier
iris = load_iris()
X, y = iris.data[:, 1:3], iris.target
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=42)
```
2. 定义基本模型和元模型。
```python
clf1 = KNeighborsClassifier(n_neighbors=3)
clf2 = DecisionTreeClassifier()
clf3 = RandomForestClassifier(n_estimators=100)
clf4 = SVC(kernel='linear', probability=True)
lr = LogisticRegression()
```
3. 定义Stacking模型,并进行交叉验证。
```python
sclf = StackingClassifier(classifiers=[clf1, clf2, clf3, clf4],
meta_classifier=lr)
kfold = KFold(n_splits=10, shuffle=True, random_state=42)
for clf, label in zip([clf1, clf2, clf3, clf4, sclf], ['KNN', 'Decision Tree', 'Random Forest', 'SVM', 'StackingClassifier']):
scores = cross_val_score(clf, X, y, cv=kfold, scoring='accuracy')
print("Accuracy: %0.2f (+/- %0.2f) [%s]" % (scores.mean(), scores.std(), label))
```
4. 对Stacking模型进行调参。
```python
params = {'kneighborsclassifier__n_neighbors': [1, 3, 5],
'decisiontreeclassifier__max_depth': [1, 2],
'randomforestclassifier__max_depth': [1, 2],
'meta-logisticregression__C': [0.1, 1.0, 10.0]}
grid = GridSearchCV(estimator=sclf,
param_grid=params,
cv=kfold,
refit=True)
grid.fit(X_train, y_train)
print("Best parameters set found on development set:")
print(grid.best_params_)
print("Grid scores on development set:")
means = grid.cv_results_['mean_test_score']
stds = grid.cv_results_['std_test_score']
for mean, std, params in zip(means, stds, grid.cv_results_['params']):
print("%0.3f (+/-%0.03f) for %r" % (mean, std * 2, params))
```
5. 计算Stacking模型在测试集上的准确率。
```python
y_pred = grid.predict(X_test)
print('Accuracy: %.2f' % accuracy_score(y_test, y_pred))
```
通过以上步骤,我们就可以使用Python和scikit-learn库实现Stacking方法来组合预测了。
阅读全文