c++ 这几个变量怎么在 构造函数中初始化?代码如下 class test{ private: std::istringstream mStream; int32_t mIndent; bool mFirstLine; };

时间: 2023-12-14 14:38:39 浏览: 63
可以使用成员初始化列表在构造函数中初始化这些变量,如下所示: ``` class test { private: std::istringstream mStream; int32_t mIndent; bool mFirstLine; public: test() : mIndent(0), mFirstLine(true) {} }; ``` 在这个例子中,我们使用初始化列表来初始化 `mIndent` 和 `mFirstLine`,而 `mStream` 将使用其默认构造函数进行初始化。这个构造函数将 `mIndent` 设置为0,将 `mFirstLine` 设置为 `true`。你也可以在初始化列表中显式地调用 `mStream` 的构造函数来设置初始值。
相关问题

#include<iostream> #include<ctime> #include<chrono> #include<string> #include<filesystem> #include<fstream> #include<sstream> #include<thread> #include<boost/filesystem.hpp> const uintmax_t MAX_LOGS_SIZE = 10ull * 1024ull * 1024ull * 1024ull; //const uintmax_t MAX_LOGS_SIZE = 10ull; void create_folder(std::string folder_name) { boost::filesystem::create_directory(folder_name); std::string sub_foldername=folder_name+"/logs_ros"; boost::filesystem::create_directory(sub_foldername); } std::string get_current_time() { auto now = std::chrono::system_clock::now(); std::time_t now_c = std::chrono::system_clock::to_time_t(now); std::tm parts = *std::localtime(&now_c); char buffer[20]; std::strftime(buffer, sizeof(buffer), "%Y-%m-%d-%H-%M", &parts); return buffer; } void check_logs_size() { std::string logs_path = "/home/sage/logs/"; boost::filesystem::path logs_dir(logs_path); std::uintmax_t total_size = 0; for (const auto& file : boost::filesystem::recursive_directory_iterator(logs_dir)) { if (boost::filesystem::is_regular_file(file)) { total_size += boost::filesystem::file_size(file); } } if (total_size > MAX_LOGS_SIZE) { boost::filesystem::path earliest_dir; std::time_t earliest_time = std::time(nullptr); for (const auto& dir : boost::filesystem::directory_iterator(logs_dir)) { if (boost::filesystem::is_directory(dir)) { std::string dir_name = dir.path().filename().string(); std::tm time_parts = {}; std::istringstream ss(dir_name); std::string part; std::getline(ss, part, '-'); time_parts.tm_year = std::stoi(part) - 1900; std::getline(ss, part, '-'); time_parts.tm_mon = std::stoi(part) - 1; std::getline(ss, part, '-'); time_parts.tm_mday = std::stoi(part); std::getline(ss, part, '-'); time_parts.tm_hour = std::stoi(part); std::getline(ss, part, '-'); time_parts.tm_min = std::stoi(part); std::time_t dir_time = std::mktime(&time_parts); if (dir_time < earliest_time) { earliest_time = dir_time; earliest_dir = dir.path(); } } } if (!earliest_dir.empty()) { boost::filesystem::remove_all(earliest_dir); } } } int main() { std::string logs_path = "/home/sage/logs/"; while (true) { std::chrono::system_clock::time_point now = std::chrono::system_clock::now(); std::time_t now_c = std::chrono::system_clock::to_time_t(now); std::tm parts = *std::localtime(&now_c); if (parts.tm_min % 10 == 0) { std::string folder_name = logs_path + get_current_time(); create_folder(folder_name); } check_logs_size(); std::this_thread::sleep_for(std::chrono::minutes(1)); } return 0; }修改为ros节点

好的,我可以帮您将这段代码修改为ROS节点。首先,我们需要包含ROS所需的头文件,例如: ```cpp #include <ros/ros.h> ``` 然后,我们需要在main函数中初始化ROS节点: ```cpp int main(int argc, char** argv) { ros::init(argc, argv, "log_manager_node"); ros::NodeHandle nh; // ... return 0; } ``` 接下来,我们需要将定时任务和日志删除任务分别封装为ROS的定时器和服务。在main函数中,我们可以这样定义一个定时器: ```cpp ros::Timer timer = nh.createTimer(ros::Duration(60.0), timerCallback); ``` 其中,`timerCallback` 是一个你需要定义的回调函数,它将在每隔60秒被定时器调用一次。在回调函数中,你可以像之前的代码一样执行创建文件夹和检查日志大小的任务。 同样地,我们可以定义一个ROS服务来执行删除任务。我们需要在main函数中定义一个服务服务器: ```cpp ros::ServiceServer delete_logs_server = nh.advertiseService("delete_logs", deleteLogsCallback); ``` 其中,`deleteLogsCallback` 是一个你需要定义的服务回调函数,它将在收到删除日志服务请求时被调用。在回调函数中,你可以像之前的代码一样执行删除日志的任务。 最后,完整的ROS节点代码如下: ```cpp #include <ros/ros.h> #include <ctime> #include <chrono> #include <string> #include <filesystem> #include <fstream> #include <sstream> #include <thread> #include <boost/filesystem.hpp> const uintmax_t MAX_LOGS_SIZE = 10ull * 1024ull * 1024ull * 1024ull; void create_folder(std::string folder_name) { boost::filesystem::create_directory(folder_name); std::string sub_foldername = folder_name + "/logs_ros"; boost::filesystem::create_directory(sub_foldername); } std::string get_current_time() { auto now = std::chrono::system_clock::now(); std::time_t now_c = std::chrono::system_clock::to_time_t(now); std::tm parts = *std::localtime(&now_c); char buffer[20]; std::strftime(buffer, sizeof(buffer), "%Y-%m-%d-%H-%M", &parts); return buffer; } void check_logs_size() { std::string logs_path = "/home/sage/logs/"; boost::filesystem::path logs_dir(logs_path); std::uintmax_t total_size = 0; for (const auto& file : boost::filesystem::recursive_directory_iterator(logs_dir)) { if (boost::filesystem::is_regular_file(file)) { total_size += boost::filesystem::file_size(file); } } if (total_size > MAX_LOGS_SIZE) { boost::filesystem::path earliest_dir; std::time_t earliest_time = std::time(nullptr); for (const auto& dir : boost::filesystem::directory_iterator(logs_dir)) { if (boost::filesystem::is_directory(dir)) { std::string dir_name = dir.path().filename().string(); std::tm time_parts = {}; std::istringstream ss(dir_name); std::string part; std::getline(ss, part, '-'); time_parts.tm_year = std::stoi(part) - 1900; std::getline(ss, part, '-'); time_parts.tm_mon = std::stoi(part) - 1; std::getline(ss, part, '-'); time_parts.tm_mday = std::stoi(part); std::getline(ss, part, '-'); time_parts.tm_hour = std::stoi(part); std::getline(ss, part, '-'); time_parts.tm_min = std::stoi(part); std::time_t dir_time = std::mktime(&time_parts); if (dir_time < earliest_time) { earliest_time = dir_time; earliest_dir = dir.path(); } } } if (!earliest_dir.empty()) { boost::filesystem::remove_all(earliest_dir); } } } void timerCallback(const ros::TimerEvent& event) { std::string logs_path = "/home/sage/logs/"; std::chrono::system_clock::time_point now = std::chrono::system_clock::now(); std::time_t now_c = std::chrono::system_clock::to_time_t(now); std::tm parts = *std::localtime(&now_c); if (parts.tm_min % 10 == 0) { std::string folder_name = logs_path + get_current_time(); create_folder(folder_name); } check_logs_size(); } bool deleteLogsCallback(std_srvs::Empty::Request& req, std_srvs::Empty::Response& res) { std::string logs_path = "/home/sage/logs/"; boost::filesystem::path logs_dir(logs_path); boost::filesystem::remove_all(logs_dir); return true; } int main(int argc, char** argv) { ros::init(argc, argv, "log_manager_node"); ros::NodeHandle nh; ros::Timer timer = nh.createTimer(ros::Duration(60.0), timerCallback); ros::ServiceServer delete_logs_server = nh.advertiseService("delete_logs", deleteLogsCallback); ros::spin(); return 0; } ``` 在这个节点中,我们定义了一个名为 `log_manager_node` 的ROS节点,并在其中实现了一个定时器和一个服务。定时器每隔60秒检查一次日志大小并创建新的日志文件夹,服务则用于删除所有日志文件。

std::istringstream

### 回答1: std::istringstream是C++ STL库中的一个类,用于将字符串转换为其他类型的数据,例如整数、浮点数、字符等。它可以将一个字符串作为输入流,然后通过提取运算符>>将字符串中的数据提取出来,并将其转换为指定的数据类型。这个类非常方便,可以用于处理从文件或网络中读取的数据,或者从用户输入中读取数据。 ### 回答2: std::istringstream是C++ STL中的一个类,头文件为<sstream>,可以将一个字符串解析成一个或多个单独的数据类型。其作用类似于从字符串中提取数据的函数,但是使用该类可以更为方便和灵活地读取从字符串中获取的数据。 std::istringstream可以接受一个字符串作为参数并创建一个输入流来读取该字符串中的数据。因此,它不仅可以用于读取标准输入和文件,还可以用于读取字符串中的数据。通常情况下,std::istringstream被用于读取CSV文件等格式的数据。 使用std::istringstream需要先创建对象,然后将需要读取的字符串作为输入流输入到对象中。接着可以通过重载的操作符>>来逐个读取数据。这些数据可以是任何常用的C++数据类型,例如int、float、string等。使用完后,应该关闭输入流。 需要注意的是,std::istringstream的输入流会根据数据类型自动进行转换。如果读取到的数据类型与该数据类型不匹配,将会抛出异常。此外,std::istringstream通常用于读取单行数据,如果需要多行数据,可以使用循环读取。 综上所述,std::istringstream是一种用于解析字符串的C++ STL类。使用该类可以更为方便和灵活地读取从字符串中获取的数据,通常用于读取CSV文件等格式的数据。但需要注意的是,输入流会根据数据类型自动进行转换,如果读取到的数据类型与该数据类型不匹配,将会抛出异常。 ### 回答3: std::istringstream是C++ STL库中的一个类,它继承自std::basic_istream类,用于将std::string类型的数据转换为C++内置数据类型,如int、double等。对于需要在程序中快速转化字符串为数值的场景,std::istringstream可以提供一种高效方便的解决方案。 当我们想要将一个std::string类型的数据转换为int类型时,可以通过以下步骤使用std::istringstream进行转换: 1. 创建一个std::istringstream对象,并将要转换的std::string类型的数据作为参数传入。 2. 调用std::istringstream对象的>>运算符,将int类型变量作为参数传入。此时,std::istringstream对象会尝试将字符串转换为int类型,如果转换成功,则将值存储到int类型变量中。 3. 检查转换后的值是否符合要求,如果不符合,可以做出相应的反应。 使用std::istringstream进行数据转换的示例代码如下: ``` #include <sstream> #include <iostream> #include <string> int main() { std::string str = "123"; std::istringstream iss(str); int num; iss >> num; std::cout << "The value of num is: " << num << std::endl; return 0; } ``` 输出结果为: ``` The value of num is: 123 ``` 除了将字符串转换为int类型外,std::istringstream还可以用于将字符串转换为double、bool等类型。我们可以通过适当修改上述代码,来实现不同类型数据之间的转换。总的来说,std::istringstream是一个非常有用的类,它可以帮助我们更加方便地进行数据处理和转换。
阅读全文

相关推荐

使用C++实现有向图的邻接矩阵,以及可达矩阵的计算算法。 请完成Project05.cpp中DirectedGraph类的成员函数,具体要求如下: DirectedGraph类: 用来表示一个有向图。 成员变量: m_AdjMat:邻接矩阵 m_ReachabilityMat:可达矩阵 成员函数: DirectedGraph():默认构造函数,构造一个空图。 ~DirectedGraph():析构函数 DirectedGraph(string filepath):解析文件filepath,构造一个DirectedGraph对象。 filepath文件格式与项目四相同,但本项目的图为有向图。 DirectedGraph(const Graph & graph):复制构造函数 operator=(const Graph & graph):赋值运算符 ClearGraph():清空图的邻接矩阵和可达矩阵。 OutputGraph():输出图的邻接矩阵 operator*(const DirectedGraph & graph): 乘法运算符,用于实现可达矩阵运算中的矩阵逻辑乘 DirectedGraph Pow(int power):邻接矩阵的整数次幂。 用法如下: DirectedGraph a; a = a.Pow(5); 即a的5次幂,相当于a = a * a * a * a * a; 注意要考虑0次幂的情况。 该函数适合以递归实现。 DirectedGraph MatOr(DirectedGraph graph):矩阵逐元素的逻辑或运算。 例如: 1 0 0 1 与 0 1 1 0 运算后的结果为 1 1 1 1 void CalcReachabilityMat():计算可达矩阵,要求该函数基于*运算符和Pow函数实现 void OutputReachabilityMat():输出可达矩阵 IsConnected(int src, int dst):基于可达矩阵判断从节点src与dst之间是否存在通路,如存在返回真,否则返回假

最新推荐

recommend-type

C++ 读取文件内容到指定类型的变量方法

这三个关键词充分体现了这篇文章的主题和内容,即使用C++ 语言读取文件内容并存储到变量中。 部分内容 部分内容提供了一个完整的C++ 程序,演示了如何从文件中读取数据并将其存储到指定类型的变量中。下面是该程序...
recommend-type

A级景区数据文件json

A级景区数据文件json
recommend-type

JHU荣誉单变量微积分课程教案介绍

资源摘要信息:"jhu2017-18-honors-single-variable-calculus" 知识点一:荣誉单变量微积分课程介绍 本课程为JHU(约翰霍普金斯大学)的荣誉单变量微积分课程,主要针对在2018年秋季和2019年秋季两个学期开设。课程内容涵盖两个学期的微积分知识,包括整合和微分两大部分。该课程采用IBL(Inquiry-Based Learning)格式进行教学,即学生先自行解决问题,然后在学习过程中逐步掌握相关理论知识。 知识点二:IBL教学法 IBL教学法,即问题导向的学习方法,是一种以学生为中心的教学模式。在这种模式下,学生在教师的引导下,通过提出问题、解决问题来获取知识,从而培养学生的自主学习能力和问题解决能力。IBL教学法强调学生的主动参与和探索,教师的角色更多的是引导者和协助者。 知识点三:课程难度及学习方法 课程的第一次迭代主要包含问题,难度较大,学生需要有一定的数学基础和自学能力。第二次迭代则在第一次的基础上增加了更多的理论和解释,难度相对降低,更适合学生理解和学习。这种设计旨在帮助学生从实际问题出发,逐步深入理解微积分理论,提高学习效率。 知识点四:课程先决条件及学习建议 课程的先决条件为预演算,即在进入课程之前需要掌握一定的演算知识和技能。建议在使用这些笔记之前,先完成一些基础演算的入门课程,并进行一些数学证明的练习。这样可以更好地理解和掌握课程内容,提高学习效果。 知识点五:TeX格式文件 标签"TeX"意味着该课程的资料是以TeX格式保存和发布的。TeX是一种基于排版语言的格式,广泛应用于学术出版物的排版,特别是在数学、物理学和计算机科学领域。TeX格式的文件可以确保文档内容的准确性和排版的美观性,适合用于编写和分享复杂的科学和技术文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【实战篇:自定义损失函数】:构建独特损失函数解决特定问题,优化模型性能

![损失函数](https://img-blog.csdnimg.cn/direct/a83762ba6eb248f69091b5154ddf78ca.png) # 1. 损失函数的基本概念与作用 ## 1.1 损失函数定义 损失函数是机器学习中的核心概念,用于衡量模型预测值与实际值之间的差异。它是优化算法调整模型参数以最小化的目标函数。 ```math L(y, f(x)) = \sum_{i=1}^{N} L_i(y_i, f(x_i)) ``` 其中,`L`表示损失函数,`y`为实际值,`f(x)`为模型预测值,`N`为样本数量,`L_i`为第`i`个样本的损失。 ## 1.2 损
recommend-type

如何在ZYNQMP平台上配置TUSB1210 USB接口芯片以实现Host模式,并确保与Linux内核的兼容性?

要在ZYNQMP平台上实现TUSB1210 USB接口芯片的Host模式功能,并确保与Linux内核的兼容性,首先需要在硬件层面完成TUSB1210与ZYNQMP芯片的正确连接,保证USB2.0和USB3.0之间的硬件电路设计符合ZYNQMP的要求。 参考资源链接:[ZYNQMP USB主机模式实现与测试(TUSB1210)](https://wenku.csdn.net/doc/6nneek7zxw?spm=1055.2569.3001.10343) 具体步骤包括: 1. 在Vivado中设计硬件电路,配置USB接口相关的Bank502和Bank505引脚,同时确保USB时钟的正确配置。
recommend-type

Naruto爱好者必备CLI测试应用

资源摘要信息:"Are-you-a-Naruto-Fan:CLI测验应用程序,用于检查Naruto狂热者的知识" 该应用程序是一个基于命令行界面(CLI)的测验工具,设计用于测试用户对日本动漫《火影忍者》(Naruto)的知识水平。《火影忍者》是由岸本齐史创作的一部广受欢迎的漫画系列,后被改编成同名电视动画,并衍生出一系列相关的产品和文化现象。该动漫讲述了主角漩涡鸣人从忍者学校开始的成长故事,直到成为木叶隐村的领袖,期间包含了忍者文化、战斗、忍术、友情和忍者世界的政治斗争等元素。 这个测验应用程序的开发主要使用了JavaScript语言。JavaScript是一种广泛应用于前端开发的编程语言,它允许网页具有交互性,同时也可以在服务器端运行(如Node.js环境)。在这个CLI应用程序中,JavaScript被用来处理用户的输入,生成问题,并根据用户的回答来评估其对《火影忍者》的知识水平。 开发这样的测验应用程序可能涉及到以下知识点和技术: 1. **命令行界面(CLI)开发:** CLI应用程序是指用户通过命令行或终端与之交互的软件。在Web开发中,Node.js提供了一个运行JavaScript的环境,使得开发者可以使用JavaScript语言来创建服务器端应用程序和工具,包括CLI应用程序。CLI应用程序通常涉及到使用诸如 commander.js 或 yargs 等库来解析命令行参数和选项。 2. **JavaScript基础:** 开发CLI应用程序需要对JavaScript语言有扎实的理解,包括数据类型、函数、对象、数组、事件循环、异步编程等。 3. **知识库构建:** 测验应用程序的核心是其问题库,它包含了与《火影忍者》相关的各种问题。开发人员需要设计和构建这个知识库,并确保问题的多样性和覆盖面。 4. **逻辑和流程控制:** 在应用程序中,需要编写逻辑来控制测验的流程,比如问题的随机出现、计时器、计分机制以及结束时的反馈。 5. **用户界面(UI)交互:** 尽管是CLI,用户界面仍然重要。开发者需要确保用户体验流畅,这包括清晰的问题呈现、简洁的指令和友好的输出格式。 6. **模块化和封装:** 开发过程中应当遵循模块化原则,将不同的功能分隔开来,以便于管理和维护。例如,可以将问题生成器、计分器和用户输入处理器等封装成独立的模块。 7. **单元测试和调试:** 测验应用程序在发布前需要经过严格的测试和调试。使用如Mocha或Jest这样的JavaScript测试框架可以编写单元测试,并通过控制台输出调试信息来排除故障。 8. **部署和分发:** 最后,开发完成的应用程序需要被打包和分发。如果是基于Node.js的应用程序,常见的做法是将其打包为可执行文件(如使用electron或pkg工具),以便在不同的操作系统上运行。 根据提供的文件信息,虽然具体细节有限,但可以推测该应用程序可能采用了上述技术点。用户通过点击提供的链接,可能将被引导到一个网页或直接下载CLI应用程序的可执行文件,从而开始进行《火影忍者》的知识测验。通过这个测验,用户不仅能享受答题的乐趣,还可以加深对《火影忍者》的理解和认识。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

【强化学习损失函数探索】:奖励函数与损失函数的深入联系及优化策略

![【强化学习损失函数探索】:奖励函数与损失函数的深入联系及优化策略](https://cdn.codeground.org/nsr/images/img/researchareas/ai-article4_02.png) # 1. 强化学习中的损失函数基础 强化学习(Reinforcement Learning, RL)是机器学习领域的一个重要分支,它通过与环境的互动来学习如何在特定任务中做出决策。在强化学习中,损失函数(loss function)起着至关重要的作用,它是学习算法优化的关键所在。损失函数能够衡量智能体(agent)的策略(policy)表现,帮助智能体通过减少损失来改进自
recommend-type

如何在Springboot后端项目中实现前端的多人视频会议功能,并使用Vue.js与ElementUI进行界面开发?

要在Springboot后端项目中实现前端的多人视频会议功能,首先需要了解Springboot、WebRTC、Vue.js以及ElementUI的基本概念和用途。Springboot作为后端框架,负责处理业务逻辑和提供API接口;WebRTC技术则用于实现浏览器端的实时视频和音频通信;Vue.js作为一个轻量级的前端框架,用于构建用户界面;ElementUI提供了丰富的UI组件,可加速前端开发过程。 参考资源链接:[多人视频会议前端项目:Springboot与WebRTC的结合](https://wenku.csdn.net/doc/6jkpejn9x3?spm=1055.2569.3001