内核启动参数 nohz=off : 关闭dynamic ticks模式。 这句话的表述是否正确,如果正确给出详细解释,如果错误则纠正

时间: 2024-03-19 17:41:09 浏览: 10
这句话的表述不完全正确。 nohz=off 参数可以用于关闭 Linux 内核中的“节拍”(tick)机制,而不是“dynamic ticks”模式。在 Linux 内核中,常规的节拍机制会每隔一段时间(通常是几毫秒)产生一次中断,以便进行一些处理,如更新系统时间、执行调度等等。而“dynamic ticks”模式是一种优化,它可以根据系统的负载情况动态地调整中断频率,以提高系统性能。关闭“节拍”机制后,系统将不再周期性地产生中断,从而降低了内核的负载和功耗。但是,这也可能会导致某些功能出现问题,如实时性能下降、定时器不准确等等。因此,nohz=off 参数应该慎重使用,并根据具体情况进行调整。
相关问题

Linux内核 init_task 在什么文件定义?功能是什么?给出源码

Linux内核的 `init_task` 定义在 `init/init_task.c` 文件中,其功能是作为内核线程的起点,在内核启动时初始化进程0的任务结构体。 `init_task` 的定义如下: ```c struct task_struct init_task = INIT_TASK(init_task); ``` 其中,`INIT_TASK` 宏定义在 `include/linux/sched.h` 文件中,用于初始化 `task_struct` 结构体的各个字段。`init_task` 的完整定义如下: ```c struct task_struct init_task = { .state = 0, .stack = init_stack, .usage = ATOMIC_INIT(2), .flags = PF_KTHREAD, .prio = MAX_PRIO-20, .static_prio = MAX_PRIO-20, .normal_prio = MAX_PRIO-20, #ifdef CONFIG_SCHED_DEADLINE .dl = { .dl_runtime = RUNTIME_INF, .dl_deadline = DEADLINE_INF, .dl_period = PERIOD_INF, }, #endif #ifdef CONFIG_CGROUP_SCHED .se = { .group_node = { .kn = KERN_ID, }, .parent = &se_root, .cfs_rq = &init_task.rq->cfs, .avg = { .runnable_sum = WMULT_CONST(TASK_MAX, WMULT), .runnable_avg = WMULT_CONST(TASK_MAX, WMULT), .decay_count = 0, }, .delta_exec = 0, .delta_fair = 0, .sum_exec_runtime = 0, .vruntime = 0, .fair_sleep_stamp = 0, .last_wakeup = 0, .sleep_start = 0, .last_schedule = 0, .cookies = { [0] = -1, [1] = -1, }, }, #endif #ifdef CONFIG_RT_MUTEXES .pi_lock_task = { .prev = LIST_HEAD_INIT(init_task.pi_lock_task.prev), .next = LIST_HEAD_INIT(init_task.pi_lock_task.next), .lock_count = 0, }, #endif .tasks = LIST_HEAD_INIT(init_task.tasks), .ptraced = LIST_HEAD_INIT(init_task.ptraced), .thread_node = LIST_HEAD_INIT(init_task.thread_node), .se.on_rq = 0, .se.exec_start = 0, .cpu_timers = INIT_CPU_TIMERS(init_task), .pi_state = { 0 }, .wake_entry = { NULL, NULL }, .blkio = { NULL, }, .io_context = NULL, .splice_pipe = NULL, .sighand = &init_sigpending, .signal = { .rlim = INIT_RLIMITS, .siglock = __SPIN_LOCK_UNLOCKED(init_task.signal.siglock), .shared_pending = LIST_HEAD_INIT(init_task.signal.shared_pending), .group_exit_code = 0, }, .blocked = {{0, 0}}, .alloc_lock = __SPIN_LOCK_UNLOCKED(init_task.alloc_lock), .journal_info = NULL, .cpu = 0, .cpus_allowed = CPU_MASK_ALL, .ptrace = { .tracehook = NULL, .tracer = NULL, }, .set_child_tid = NULL, .clear_child_tid = NULL, .utime = 0, .stime = 0, .utimescaled = 0, .stimescaled = 0, .gtime = 0, .prev_cputime = 0, .nvcsw = 0, .nivcsw = 0, .start_time = {0}, .real_start_time = {0}, .min_flt = 0, .maj_flt = 0, .cputime_expires = 0, .cpu_timers_nohz = { [0 ... TIMER_STATS_NSTATS-1] = TIMER_DEF_INITIALIZER, }, .perf_event_list = LIST_HEAD_INIT(init_task.perf_event_list), .perf_counter_ctx = NULL, .pi_lock = &init_task.alloc_lock, .timer_slack_ns = 50000, /* 50 usec default slack */ .pids = { NULL, }, .thread_group = LIST_HEAD_INIT(init_task.thread_group), .thread_group_leader = &init_task, .thread_pid = &init_struct_pid, .group_leader = &init_task, .used_math = 0, #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN .vtime_seq = 0, .vtime_snap = 0, #endif #ifdef CONFIG_ILLEGAL_POINTER_VALUE .bad_iret = 0x00000000, #endif .splice_sched = INIT_LIST_HEAD(&init_task.splice_sched), #ifdef CONFIG_TASK_XACCT .acct_rss_mem1 = 0, .acct_vm_mem1 = 0, .acct_timexpd = 0, #endif #ifdef CONFIG_CPUSETS .cpuset_mem_spread_rotor = 0, .cpuset_slab_spread_rotor = 0, .cpuset_mems_allowed = { { nodemask_all_pages } }, .mems_allowed_seqnr = 0, #endif #ifdef CONFIG_NUMA_BALANCING .numa_group = NULL, .numa_faults = 0, #endif #ifdef CONFIG_CGROUP_FREEZER .freezer = { .state = FROZEN, .pids_frozen = 0, .mnt_id = 0, .pid_list = LIST_HEAD_INIT(init_task.freezer.pid_list), .parent_swait = __WAIT_QUEUE_HEAD_INITIALIZER(init_task.freezer.parent_swait), }, #endif #ifdef CONFIG_DEBUG_MUTEXES .blocked_on = NULL, .blocked_on_lock = NULL, #endif }; ``` `init_task` 结构体包含了多个字段,用于描述进程的各种属性和状态。其中比较重要的字段包括: - `state`:进程状态。 - `stack`:进程的内核栈。 - `flags`:进程标志位。 - `prio`:进程优先级。 - `se`:进程的调度实体。 - `sighand`:进程的信号处理程序。 - `signal`:进程的信号处理队列。 - `blocked`:进程阻塞情况。 - `cpu`:进程正在运行的 CPU。 - `cpus_allowed`:进程可以运行的 CPU 集合。 - `thread_group_leader`:进程组的领导进程。 - `thread_pid`:进程的线程 ID。 - `group_leader`:进程组的领导进程。 这些字段都是内核调度器进行进程调度的必要信息。

Linux 内核timer_interrupt()源码解析

timer_interrupt() 是 Linux 内核中的一个定时器中断处理函数,它主要用于处理内核中的各种定时器事件,包括时钟中断、定时器任务等。 源码如下: ```c void __irqentry timer_interrupt(struct pt_regs *regs) { ... update_process_times(user_mode(regs)); profile_tick(CPU_PROFILING, user_mode(regs), regs); if (user_mode(regs)) return; irq_enter(); #ifdef CONFIG_NO_HZ_COMMON /* * The tick broadcast device is disabled after the first * CPU goes offlined, see tick_nohz_enable. */ if (tick_nohz_tick_stopped()) goto out; #endif tick_check_idle(TICK_NMI_SAFE); /* * Tickless idle is in progress. */ if (idle_cpu(smp_processor_id())) { watchdog_touch(); smp_idle_check(); goto out; } /* * Check if we need to do anything at all: */ if (!tick_check_oneshot_broadcast(tick_nohz_full_cpu_idle())) { if (tick_check_oneshot() && !tick_check_broadcast_expired() && !tick_broadcast_oneshot_active()) { tick_program_event(tick_oneshot_broadcast, oneshot_timer.expires); goto out; } if (tick_check_broadcast_spurious()) goto out; if (tick_check_cpu_dead(cpu) || tick_check_new_device(cpu)) goto out; tick_check_replacement(cpu); } /* * Re-enable periodic tick if it is stopped and there are no * oneshot or broadcast events pending: */ if (tick_check_periodic() && !tick_check_oneshot_active() && !tick_check_broadcast_active()) tick_program_event(tick_periodic, tick_next_period); out: irq_exit(); ... } ``` 该函数的主要流程如下: 1. 调用 update_process_times() 和 profile_tick() 更新进程的时间信息和性能分析信息。 2. 判断是否是用户态,如果是则直接返回。 3. 调用 irq_enter() 进入中断上下文。 4. 检查 tickless idle 是否正在进行,如果是,则直接返回。 5. 检查是否正在进行 idle,如果是,则调用 watchdog_touch() 和 smp_idle_check(),并直接返回。 6. 检查是否需要进行任何操作。 7. 如果需要,检查是否需要启动一次性定时器事件。 8. 如果需要,检查是否需要启动广播定时器事件。 9. 如果需要,检查是否需要停止定时器,并重新启动。 10. 调用 irq_exit() 退出中断上下文。 总的来说,timer_interrupt() 函数主要用于检查和处理各种定时器事件,以保证内核的正常运行。这些事件包括一次性定时器、广播定时器、周期性定时器等。

相关推荐

最新推荐

recommend-type

软考-考生常见操作说明-202405101400-纯图版.pdf

软考官网--2024常见操作说明:包括如何绘制网络图、UML图、表格等 模拟作答系统是计算机技术与软件专业技术资格(水平)考试的电子化考试系统界面、作答过程的仿真系统,为各级别、各资格涉及输入和页面显示的部分题型提供体验性练习。
recommend-type

setuptools-34.0.3.zip

Node.js,简称Node,是一个开源且跨平台的JavaScript运行时环境,它允许在浏览器外运行JavaScript代码。Node.js于2009年由Ryan Dahl创立,旨在创建高性能的Web服务器和网络应用程序。它基于Google Chrome的V8 JavaScript引擎,可以在Windows、Linux、Unix、Mac OS X等操作系统上运行。 Node.js的特点之一是事件驱动和非阻塞I/O模型,这使得它非常适合处理大量并发连接,从而在构建实时应用程序如在线游戏、聊天应用以及实时通讯服务时表现卓越。此外,Node.js使用了模块化的架构,通过npm(Node package manager,Node包管理器),社区成员可以共享和复用代码,极大地促进了Node.js生态系统的发展和扩张。 Node.js不仅用于服务器端开发。随着技术的发展,它也被用于构建工具链、开发桌面应用程序、物联网设备等。Node.js能够处理文件系统、操作数据库、处理网络请求等,因此,开发者可以用JavaScript编写全栈应用程序,这一点大大提高了开发效率和便捷性。 在实践中,许多大型企业和组织已经采用Node.js作为其Web应用程序的开发平台,如Netflix、PayPal和Walmart等。它们利用Node.js提高了应用性能,简化了开发流程,并且能更快地响应市场需求。
recommend-type

基于遗传优化GA的三目标优化仿真【包括程序,注释,操作步骤】

1.版本:matlab2022A。 2.包含:程序,中文注释,仿真操作步骤(使用windows media player播放)。 3.领域:遗传优化 4.仿真效果:仿真效果可以参考博客同名文章《基于遗传优化GA的三目标优化仿真》 5.内容:基于遗传优化GA的三目标优化仿真。遗传算法(Genetic Algorithm, GA)是一种模拟自然选择和遗传机制的全局搜索优化方法,广泛应用于解决复杂优化问题,包括具有多个目标的优化问题,即多目标遗传算法(Multi-Objective Genetic Algorithm, MOGA)。在这里,将三个目标函数进行统一的编码,通过单目标遗传优化的方式,同步求解三个目标函数的最优值。 6.注意事项:注意MATLAB左侧当前文件夹路径,必须是程序所在文件夹位置,具体可以参考视频录。
recommend-type

基于单通道脑电信号的自动睡眠分期研究.zip

本项目使用了Sleep-EDF公开数据集的SC数据进行实验,一共153条整晚的睡眠记录,使用Fpz-Cz通道,采样频率为100Hz 整套代码写的较为简洁,而且有添加相应的注释,因此进行分享,而且不仅仅说是睡眠分期,也可以作为学习如何使用神经网络去进行时序数据分类问题的一个入门项目,包括怎么用GRU、LSTM和Attention这些经典网络结构。 网络结构(具体可查看network.py文件): 网络整体结构类似于TinySleepNet,对RNN部分进行了修改,增加了双向RNN、GRU、Attention等网络结构,可根据参数进行调整选择。 定义了seq_len参数,可以更灵活地调整batch_size与seq_len。 数据集加载(具体可查看dataset.py文件) 直接继承自torch的Dataset,并定义了seq_len和shuffle_seed,方便调整输入,并复现实验。 训练(具体可查看train.py文件):
recommend-type

setuptools-27.3.1.tar.gz

Node.js,简称Node,是一个开源且跨平台的JavaScript运行时环境,它允许在浏览器外运行JavaScript代码。Node.js于2009年由Ryan Dahl创立,旨在创建高性能的Web服务器和网络应用程序。它基于Google Chrome的V8 JavaScript引擎,可以在Windows、Linux、Unix、Mac OS X等操作系统上运行。 Node.js的特点之一是事件驱动和非阻塞I/O模型,这使得它非常适合处理大量并发连接,从而在构建实时应用程序如在线游戏、聊天应用以及实时通讯服务时表现卓越。此外,Node.js使用了模块化的架构,通过npm(Node package manager,Node包管理器),社区成员可以共享和复用代码,极大地促进了Node.js生态系统的发展和扩张。 Node.js不仅用于服务器端开发。随着技术的发展,它也被用于构建工具链、开发桌面应用程序、物联网设备等。Node.js能够处理文件系统、操作数据库、处理网络请求等,因此,开发者可以用JavaScript编写全栈应用程序,这一点大大提高了开发效率和便捷性。 在实践中,许多大型企业和组织已经采用Node.js作为其Web应用程序的开发平台,如Netflix、PayPal和Walmart等。它们利用Node.js提高了应用性能,简化了开发流程,并且能更快地响应市场需求。
recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

实现实时数据湖架构:Kafka与Hive集成

![实现实时数据湖架构:Kafka与Hive集成](https://img-blog.csdnimg.cn/img_convert/10eb2e6972b3b6086286fc64c0b3ee41.jpeg) # 1. 实时数据湖架构概述** 实时数据湖是一种现代数据管理架构,它允许企业以低延迟的方式收集、存储和处理大量数据。与传统数据仓库不同,实时数据湖不依赖于预先定义的模式,而是采用灵活的架构,可以处理各种数据类型和格式。这种架构为企业提供了以下优势: - **实时洞察:**实时数据湖允许企业访问最新的数据,从而做出更明智的决策。 - **数据民主化:**实时数据湖使各种利益相关者都可
recommend-type

解释minorization-maximization (MM) algorithm,并给出matlab代码编写的例子

Minorization-maximization (MM) algorithm是一种常用的优化算法,用于求解非凸问题或含有约束的优化问题。该算法的基本思想是通过构造一个凸下界函数来逼近原问题,然后通过求解凸下界函数的最优解来逼近原问题的最优解。具体步骤如下: 1. 初始化参数 $\theta_0$,设 $k=0$; 2. 构造一个凸下界函数 $Q(\theta|\theta_k)$,使其满足 $Q(\theta_k|\theta_k)=f(\theta_k)$; 3. 求解 $Q(\theta|\theta_k)$ 的最优值 $\theta_{k+1}=\arg\min_\theta Q(
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。