File E:\abcd\lib\site-packages\torch\nn\modules\module.py:1130, in Module._call_impl(self, *input, **kwargs) 1126 # If we don't have any hooks, we want to skip the rest of the logic in 1127 # this function, and just call forward. 1128 if not (self._backward_hooks or self._forward_hooks or self._forward_pre_hooks or _global_backward_hooks 1129 or _global_forward_hooks or _global_forward_pre_hooks): -> 1130 return forward_call(*input, **kwargs) 1131 # Do not call functions when jit is used 1132 full_backward_hooks, non_full_backward_hooks = [], [] Cell In[29], line 10, in RNN.forward(self, x) 8 def forward(self, x): 9 h0 = torch.zeros(1, x.size(0), self.hidden_size) ---> 10 out, _ = self.rnn(x, h0) 11 out = self.fc(out[:, -1, :]) 12 return out File E:\abcd\lib\site-packages\torch\nn\modules\module.py:1130, in Module._call_impl(self, *input, **kwargs) 1126 # If we don't have any hooks, we want to skip the rest of the logic in 1127 # this function, and just call forward. 1128 if not (self._backward_hooks or self._forward_hooks or self._forward_pre_hooks or _global_backward_hooks 1129 or _global_forward_hooks or _global_forward_pre_hooks): -> 1130 return forward_call(*input, **kwargs) 1131 # Do not call functions when jit is used 1132 full_backward_hooks, non_full_backward_hooks = [], [] File E:\abcd\lib\site-packages\torch\nn\modules\rnn.py:445, in RNN.forward(self, input, hx) 443 if hx is not None: 444 if hx.dim() != 2: --> 445 raise RuntimeError( 446 f"For unbatched 2-D input, hx should also be 2-D but got {hx.dim()}-D tensor") 447 hx = hx.unsqueeze(1) 448 else: RuntimeError: For unbatched 2-D input, hx should also be 2-D but got 3-D tensor是什么问题,该如何解决?
时间: 2024-05-04 22:21:57 浏览: 101
这是一个PyTorch中的运行时错误信息,提示在使用RNN模型时,输入的初始隐藏状态(hx)的维度不正确。具体来说,当输入x是一个未进行批处理的二维张量时,初始隐藏状态hx的维度也应该是2,但实际上hx的维度是3,因此会抛出此错误。解决这个问题的方法是,确保输入和初始隐藏状态的维度匹配。可以通过调整输入张量的形状或初始隐藏状态张量的形状来解决这个问题,使它们的维度都是二维的。例如,可以使用`unsqueeze()`方法将初始隐藏状态的维度从2扩展到3。
相关问题
RuntimeError: Could not export Python function call 'F'. Remove calls to Python functions before export. Did you forget to add @script or @script_method annotation? If this is a nn.ModuleList, add it to __constants__: E:\bolang\yolov7-coupling\utils\activations.py(65): forward E:\anaconda\envs\pytorch-1.8.1\lib\site-packages\torch\nn\modules\module.py(860): _slow_forward E:\anaconda\envs\pytorch-1.8.1\lib\site-packages\torch\nn\modules\module.py(887): _call_impl E:\bolang\yolov7-coupling\models\common.py(112): fuseforward E:\anaconda\envs\pytorch-1.8.1\lib\site-packages\torch\nn\modules\module.py(860): _slow_forward E:\anaconda\envs\pytorch-1.8.1\lib\site-packages\torch\nn\modules\module.py(887): _call_impl E:\bolang\yolov7-coupling\models\yolo.py(744): forward_once E:\bolang\yolov7-coupling\models\yolo.py(707): forward E:\anaconda\envs\pytorch-1.8.1\lib\site-packages\torch\nn\modules\module.py(860): _slow_forward E:\anaconda\envs\pytorch-1.8.1\lib\site-packages\torch\nn\modules\module.py(887): _call_impl E:\anaconda\envs\pytorch-1.8.1\lib\site-packages\torch\jit\_trace.py(934): trace_module E:\anaconda\envs\pytorch-1.8.1\lib\site-packages\torch\jit\_trace.py(733): trace E:\bolang\yolov7-coupling\utils\torch_utils.py(363): __init__ E:\bolang\yolov7-coupling\detect.py(39): detect E:\bolang\yolov7-coupling\detect.py(196): <module>
这个错误是由于在导出模型时出现了问题。错误信息中提到了一个名为'F'的 Python 函数调用,但没有添加 `@script` 或 `@script_method` 注释。如果这是一个 `nn.ModuleList`,请将其添加到 `__constants__` 中。请检查您的代码中与这些部分相关的部分,并确保按照 PyTorch 的导出要求进行操作。
Traceback (most recent call last): File "D:/LPRNet_Pytorch-master/LPRNet_Pytorch-master/train_LPRNet.py", line 268, in <module> train() File "D:/LPRNet_Pytorch-master/LPRNet_Pytorch-master/train_LPRNet.py", line 102, in train lprnet.to(device) File "D:\Anaconda\lib\site-packages\torch\nn\modules\module.py", line 899, in to return self._apply(convert) File "D:\Anaconda\lib\site-packages\torch\nn\modules\module.py", line 570, in _apply module._apply(fn) File "D:\Anaconda\lib\site-packages\torch\nn\modules\module.py", line 570, in _apply module._apply(fn) File "D:\Anaconda\lib\site-packages\torch\nn\modules\module.py", line 593, in _apply param_applied = fn(param) File "D:\Anaconda\lib\site-packages\torch\nn\modules\module.py", line 897, in convert return t.to(device, dtype if t.is_floating_point() or t.is_complex() else None, non_blocking) File "D:\Anaconda\lib\site-packages\torch\cuda\__init__.py", line 208, in _lazy_init raise AssertionError("Torch not compiled with CUDA enabled") AssertionError: Torch not compiled with CUDA enabled
这个错误是因为你的torch没有启用CUDA。在训练LPRNet时需要使用GPU加速,因此需要启用CUDA。你可以检查一下你的torch是否安装了CUDA版本,并且在代码中使用了正确的版本。如果你的torch没有安装CUDA版本,你需要重新安装一个CUDA版本的torch。如果你已经安装了CUDA版本的torch,你可以尝试在代码中添加以下代码来启用CUDA:
```
import torch
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
```
然后在将模型转移到设备时使用:
```
lprnet.to(device)
```
这应该会解决你的问题。
阅读全文