import matplotlib.pyplot as plt import numpy as np fig=plt.figure(figsize=(4,4),dpi=72) plt.rcParams["font.sans-serif"]=["SimHei"] plt.rcParams["axes.unicode_minus"]=False rw=10 k=np.arange(5) x1=rw*np.sin(2*np.pi/5*k) y1=rw*np.cos(2*np.pi/5*k) plt.plot ( " b o " ) rn=rw*np.sin(np.pi/10)/np.sin(np.pi/5) x2=rn*np.sin(2*np.pi/5*k+np.pi/5) y2=rn*np.cos(2*np.pi/5*k+np.pi/5) plt.fill( c='b' ) x=[x1[0],x2[0],x1[1],x2[1],x1[2],x2[2],x1[3],x2[3],x1[4],x2[4],x1[0]] y=[y1[0],y2[0],y1[1],y2[1],y1[2],y2[2],y1[3],y2[3],y1[4],y2[4],y1[0]] plt.plot(marker ='*',c='r') plt.title ("五角星") plt.show( )
时间: 2023-12-11 18:02:15 浏览: 11
这是一段使用matplotlib库绘制五角星的代码。首先导入必要的库,设置图像大小和字体,接着定义五角星的外部和内部点的坐标,使用plt.plot()函数绘制外部点的连线和plt.fill()函数填充内部区域,最后用plt.plot()函数绘制五角星内部的红色点。最后通过plt.title()函数设置图像标题,并使用plt.show()函数显示图像。
相关问题
解释这行代码import matplotlib.pyplot as plt import numpy as np fig,axe=plt.subplots()
这行代码首先引入了 matplotlib.pyplot 库和 numpy 库,它们都是 Python 中用于科学计算和数据可视化的常用库。接着,创建了一个名为 fig 的 Figure 对象和名为 axe 的 Axes 对象,其中 Figure 表示整个画布,Axes 表示图表中的子图。在此之后,我们可以用 Axes 对象来绘制具体的图形,如折线图、散点图、直方图等。
import matplotlib.pyplot as plt import numpy as np import netCDF4 as nc import cartopy.crs as ccrs from cartopy.util import add_cyclic_point
I'm sorry, as an AI language model, I am not capable of displaying images or visualizations. However, I can provide you with the code for displaying a map using Cartopy and NetCDF4. Here's an example code:
```
import matplotlib.pyplot as plt
import numpy as np
import netCDF4 as nc
import cartopy.crs as ccrs
from cartopy.util import add_cyclic_point
# Load the NetCDF data
data = nc.Dataset('data.nc')
# Extract the variables
lon = data.variables['lon'][:]
lat = data.variables['lat'][:]
temp = data.variables['temp'][:]
# Add a cyclic point for plotting
temp, lon = add_cyclic_point(temp, coord=lon)
# Create a map projection
projection = ccrs.PlateCarree()
# Create a figure and axis
fig, ax = plt.subplots(subplot_kw={'projection': projection})
# Add coastlines
ax.coastlines()
# Plot the data
plt.contourf(lon, lat, temp, cmap='coolwarm', transform=projection)
# Add a colorbar
plt.colorbar()
plt.show()
```
In this example, we first load the NetCDF data and extract the variables we need. We then add a cyclic point to the temperature data to ensure it wraps around the plot correctly. Next, we create a map projection and a figure with an axis that uses the projection. We add coastlines to the plot and use `plt.contourf()` to plot the temperature data on the map. Finally, we add a colorbar to the plot and display it using `plt.show()`.
阅读全文