spectral entropy python代码
时间: 2023-08-27 10:07:03 浏览: 216
Spectral-Harmonographs:另一个和声仪 - 但非常丰富多彩,并且像屏幕保护程序一样独立运行
以下是计算信号的谱熵的 Python 代码示例:
```python
import numpy as np
from scipy import signal
def spectral_entropy(x, sf, method='fft', nperseg=None, normalize=False):
"""Calculate spectral entropy of a signal.
Args:
x (np.ndarray): Input signal.
sf (float): Sampling frequency.
method (str): Method to use for spectral density estimation.
Options are 'fft' for FFT and 'welch' for Welch periodogram.
Default is 'fft'.
nperseg (int): Length of each segment in Welch method. Only used if
method is 'welch'. If None, it is set to half the length of x.
Default is None.
normalize (bool): Whether to normalize the spectral density to sum to
1. Default is False.
Returns:
float: Spectral entropy of the signal.
"""
if method == 'fft':
f, pxx = signal.periodogram(x, sf)
elif method == 'welch':
if nperseg is None:
nperseg = len(x) // 2
f, pxx = signal.welch(x, sf, nperseg=nperseg)
else:
raise ValueError('Invalid method specified.')
if normalize:
pxx /= np.sum(pxx)
return -np.sum(pxx * np.log2(pxx))
```
该函数使用 `scipy` 库中的 `signal` 模块计算信号的谱熵。可以选择使用 FFT 或 Welch 周期图法进行谱密度估计。如果选择使用 Welch 方法,则可以指定每个段的长度。如果将 `normalize` 参数设置为 `True`,则会将谱密度归一化为总和为 1。
使用示例:
```python
x = np.random.randn(1000) # Generate random signal
sf = 1000 # Sampling frequency
se = spectral_entropy(x, sf) # Compute spectral entropy
print(se)
```
阅读全文