X = torch.randn(1, 3, 224, 224) for layer in net: X=layer(X) print(layer.__class__.__name__,'output shape:\t',X.shape),batch_size = 32 train_iter, test_iter = d2l.load_data_cifar10(batch_size, resize=96),mat1 and mat2 shapes cannot be multiplied (32x1024 and 9216x4096),上述代码错误如何更改?
时间: 2024-03-19 13:44:00 浏览: 172
这段代码的错误是在于网络的某一层输出了一个错误的形状,导致后续无法进行矩阵乘法运算。错误的形状是 (32, 1024),而正确的形状应该是 (32, 9216)。因此,我们需要找到这个出现错误的层,然后修改其输出形状。
首先,我们可以通过在网络的每一层输出后打印形状来找到出错的层。具体的修改方式则因网络结构而异,这里假设是一个全连接层,需要将其输入形状修改为 (batch_size, 9216),输出形状修改为 (batch_size, 1024)。
修改后的代码如下:
```
import torch
import torchvision
import torch.nn as nn
import torch.optim as optim
import torchvision.transforms as transforms
import d2l
# define network
net = nn.Sequential(
nn.Conv2d(3, 64, kernel_size=3, stride=1, padding=1),
nn.BatchNorm2d(64),
nn.ReLU(),
nn.MaxPool2d(kernel_size=2, stride=2),
nn.Conv2d(64, 128, kernel_size=3, stride=1, padding=1),
nn.BatchNorm2d(128),
nn.ReLU(),
nn.MaxPool2d(kernel_size=2, stride=2),
nn.Conv2d(128, 256, kernel_size=3, stride=1, padding=1),
nn.BatchNorm2d(256),
nn.ReLU(),
nn.MaxPool2d(kernel_size=2, stride=2),
nn.Flatten(),
nn.Linear(9216, 1024), # 修改为 (9216, 1024)
nn.ReLU(),
nn.Linear(1024, 10)
)
# test the network
X = torch.randn(1, 3, 224, 224)
for layer in net:
X = layer(X)
print(layer.__class__.__name__, 'output shape:\t', X.shape)
# load data
batch_size = 32
train_iter, test_iter = d2l.load_data_cifar10(batch_size, resize=96)
# train the network
lr, num_epochs = 0.01, 10
optimizer = optim.SGD(net.parameters(), lr=lr)
loss = nn.CrossEntropyLoss()
d2l.train_ch5(net, train_iter, test_iter, loss, optimizer, device='cuda', num_epochs=num_epochs)
```
注意:这只是一个示例代码,实际情况下需要根据网络结构进行具体修改。
阅读全文