for (auto &i : matrix)

时间: 2024-09-12 12:06:45 浏览: 27
`for (auto &i : matrix)` 是C++11引入的基于范围的for循环(range-based for loop)的语法。它的目的是遍历容器(比如数组、vector等)中的所有元素,无需手动管理索引或迭代器。在这个例子中,`matrix`可以是一个二维数组、vector的vector或其他容器,其元素类型为`T`。`auto`关键字使得编译器自动推断出`i`的类型,这里`&`表示`i`是对当前元素的引用。 基于范围的for循环的工作机制等同于以下的传统for循环: ```cpp for (auto it = matrix.begin(); it != matrix.end(); ++it) { auto &i = *it; // ... 循环体 ... } ``` 在这个例子中,`matrix.begin()` 返回指向矩阵第一个元素的迭代器,`matrix.end()` 返回指向矩阵末尾的迭代器。循环会逐个访问矩阵中的每个元素,并在每次迭代中自动递增迭代器`it`。通过解引用迭代器`*it`获取当前元素的引用赋给`i`,然后执行循环体。 由于使用了引用符号`&`,这表示循环中对`i`的任何修改都会直接反映到`matrix`中相应的元素上,这在处理容器中元素需要修改时非常有用。
相关问题

for(auto row: col[c] i&= ~row)

s the syntax for a range-based for loop in C++. It allows you to iterate over a range of values, such as an array, vector, or other container. In this case, the loop is iterating over the elements in the c-th column of a two-dimensional array or matrix called "col". The "auto" keyword automatically deduces the type of the elements in the range, which in this case is likely a primitive data type like int or double. The variable "row" is assigned each element in the range one at a time, and the loop body can then operate on that element. The loop will continue until all elements in the range have been processed.

#include <iostream> #include <vector> using namespace std; int main() { int n; cin >> n; vector<vector<int>> lines(n); for (int i = 0; i < n; i++) { int num; cin >> num; vector<int> line; line.push_back(num); int x, y; while (cin >> x >> y) { line.push_back(x); line.push_back(y); if (cin.get() == '\n') { break; } } lines[i] = line; } vector<int> ans; vector<vector<int>> matrix(64, vector<int>(64, 0)); vector<pair<int, int>> offsets = {{-1, 0}, {1, 0}, {0, -1}, {0, 1}}; for (auto line : lines) { int num = line[0]; for (int i = 1; i < line.size(); i += 2) { int x = line[i]; int y = line[i + 1]; matrix[x][y] = num; } } for (auto line : lines) { int num = line[0]; int p = 0; for (int i = 1; i < line.size(); i += 2) { int x = line[i]; int y = line[i + 1]; for (auto offset : offsets) { int newX = x + offset.first; int newY = y + offset.second; if (newX >= 0 && newX < 64 && newY >= 0 && newY < 64) { if (matrix[newX][newY] != num) { p += 1; } } else { p += 1; } } } ans.push_back(p); } for (int i = 0; i < ans.size(); i++) { cout << ans[i]; if (i != ans.size() - 1) { cout << " "; } } return 0;解释一下

这段代码是一个用于处理输入数据并计算结果的程序。让我来解释一下它的功能: 1. 首先,程序从标准输入中读取一个整数 `n`,表示输入数据的行数。 2. 然后,程序创建一个名为 `lines` 的二维整数向量,用于存储输入数据。对于每一行数据,程序首先读取一个整数 `num`,表示该行数据的编号。然后,程序读取一对整数 `x` 和 `y`,重复读取直到遇到换行符。这些整数被存储在一个临时的整数向量 `line` 中,然后将其添加到 `lines` 向量中。 3. 接下来,程序创建一个名为 `ans` 的整数向量,用于存储计算结果。程序还创建一个名为 `matrix` 的二维整数向量,其大小为 64x64,并初始化所有元素为 0。还有一个名为 `offsets` 的向量,存储了四个偏移量对。 4. 程序使用 `lines` 向量填充 `matrix` 向量,将每个位置的值设置为对应行数据的编号。 5. 然后,程序遍历 `lines` 向量中的每一行数据。对于每一行数据,程序首先获取该行数据的编号 `num`,然后初始化变量 `p` 为 0。接下来,程序遍历该行数据中的每一对整数 `(x, y)`,并遍历 `offsets` 向量中的每个偏移量 `(offsetX, offsetY)`。程序根据偏移量计算新的位置 `(newX, newY)`,如果新位置在矩阵范围内,并且与原位置的值不相等,则将 `p` 增加 1。最后,程序将 `p` 添加到 `ans` 向量中。 6. 最后,程序遍历 `ans` 向量,并将结果打印到标准输出。每个结果之间用空格分隔。 这段代码的功能是处理输入数据,并根据特定规则计算出一个结果集,并将结果打印出来。
阅读全文

相关推荐

def get_logic_pos(self,x,y): return (y-self.margin + self.cell_width//2)//self.cell_width, (x-self.margin + self.cell_width//2)//self.cell_width def judge_line(self,row,col,direct,chess_color): c = 1 for i in range(1,6): next_row, next_col = row + direct[0][0] * i, col + direct[0][1] * i if self.matrix[next_row][next_col] == chess_color: c +=1 else: break for i in range(1, 6): next_row, next_col = row + direct[1][0] * i, col + direct[1][1] * i if self.matrix[next_row][next_col] == chess_color: c +=1 else: break return c def judge(self,row,col,chess_color): for direct in [[(-1,0),(1,0)],[(0,-1),(0,1)],[(-1,1),(1,-1)],[(-1,-1),(1,1)]]: if self.judge_line(row,col,direct,chess_color) ==6: return chess_color if len(self.history) == self.n * self.n: return -1 return 0 def deal_with_judge(self, judge_result): if not judge_result: return if judge_result == 1: txt = 'Black Win' elif judge_result == 2: txt = 'White Win' elif judge_result == -1: txt = 'Draw Chess' self.gameboard.draw_box(txt) self.full_matrix(self.n) def put_chess(self,x,y): l = len(self.history) chess_color = (l+1) % 4 // 2+1 if chess_color == self.auto_color: row, col = self.AI.generate_next(self.history, 1 - len(self.history) % 2, chess_color) else: row,col = self.get_logic_pos(x,y) if self.matrix[row][col] == 0: self.history.append((row, col, chess_color)) self.matrix[row][col] = chess_color self.gameboard.drawchess(row, col, chess_color) self.gameboard.draw_now_chess(chess_color) self.deal_with_judge(self.judge(row,col,chess_color)) def full_matrix(self,n): for i in range(self.n): for j in range(self.n): self.matrix[i][j] = 1

参考以下两段代码代码:第一段:# Lab5: Cross-Validation and the Bootstrap # The Validation Set Approach install.packages("ISLR") library(ISLR) set.seed(1) train=sample(392,196) lm.fit=lm(mpg~horsepower,data=Auto,subset=train) attach(Auto) mean((mpg-predict(lm.fit,Auto))[-train]^2) lm.fit2=lm(mpg~poly(horsepower,2),data=Auto,subset=train) mean((mpg-predict(lm.fit2,Auto))[-train]^2) lm.fit3=lm(mpg~poly(horsepower,3),data=Auto,subset=train) mean((mpg-predict(lm.fit3,Auto))[-train]^2) set.seed(2) train=sample(392,196) lm.fit=lm(mpg~horsepower,subset=train) mean((mpg-predict(lm.fit,Auto))[-train]^2) lm.fit2=lm(mpg~poly(horsepower,2),data=Auto,subset=train) mean((mpg-predict(lm.fit2,Auto))[-train]^2) lm.fit3=lm(mpg~poly(horsepower,3),data=Auto,subset=train) mean((mpg-predict(lm.fit3,Auto))[-train]^2) # Leave-One-Out Cross-Validation glm.fit=glm(mpg~horsepower,data=Auto) coef(glm.fit) lm.fit=lm(mpg~horsepower,data=Auto) coef(lm.fit) library(boot) glm.fit=glm(mpg~horsepower,data=Auto) cv.err=cv.glm(Auto,glm.fit) cv.err$delta cv.error=rep(0,5) for (i in 1:5){ glm.fit=glm(mpg~poly(horsepower,i),data=Auto) cv.error[i]=cv.glm(Auto,glm.fit)$delta[1] } cv.error第二段:library(caret) library(klaR) data(iris) splt=0.80 trainIndex <- createDataPartition(iris$Species,p=split,list=FALSE) data_train <- iris[ trainIndex,] data_test <- iris[-trainIndex,] model <- NaiveBayes(Species~.,data=data_train) x_test <- data_test[,1:4] y_test <- data_test[,5] predictions <- predict(model,x_test) confusionMatrix(predictions$class,y_test)。完成以下任务:①建立50×30的随机数据和30个变量;②生成三组不同系数的①线性模型;③(线性回归中)分别计算这三组的CV值;④(岭回归中)分别画出这三组的两张图,两张图均以lambd为横坐标,一张图以CV error为纵坐标,一张图以Prediction error为纵坐标

最新推荐

recommend-type

基于FPGA的智能车牌检测系统设计与实现

内容概要:本文介绍了一种基于FPGA的智能车牌检测系统。该系统采用了OV5640摄像头进行图像采集,通过FPGA集成化开发环境进行图像处理,主要包括图像格式转换、图像灰度化、图像增强、边缘检测、腐蚀膨胀、投影定位等技术步骤。该系统能够在复杂环境中快速实现车牌的图像采集及定位,提高了车牌检测的效率和准确性。 适合人群:具备一定嵌入式系统和图像处理基础的研究人员和技术人员。 使用场景及目标:适用于智慧交通管理系统,尤其是停车场、高速公路、智能制造等领域,主要用于实现实时的车牌检测与识别。 其他说明:系统采用Sobel算子进行边缘检测,中值滤波进行图像增强,投影定位确定车牌位置,整体处理效率较高,适用于复杂光照条件下的车牌检测。
recommend-type

【java毕业设计】springbootJava学生选课系统(springboot+vue+mysql+说明文档).zip

项目经过测试均可完美运行! 环境说明: 开发语言:java 框架:ssm jdk版本:jdk1.8 数据库:mysql 5.7+ 数据库工具:Navicat11+ 管理工具:maven 开发工具:idea/eclipse 部署容器:tomcat7+
recommend-type

构建基于Django和Stripe的SaaS应用教程

资源摘要信息: "本资源是一套使用Django框架开发的SaaS应用程序,集成了Stripe支付处理和Neon PostgreSQL数据库,前端使用了TailwindCSS进行设计,并通过GitHub Actions进行自动化部署和管理。" 知识点概述: 1. Django框架: Django是一个高级的Python Web框架,它鼓励快速开发和干净、实用的设计。它是一个开源的项目,由经验丰富的开发者社区维护,遵循“不要重复自己”(DRY)的原则。Django自带了一个ORM(对象关系映射),可以让你使用Python编写数据库查询,而无需编写SQL代码。 2. SaaS应用程序: SaaS(Software as a Service,软件即服务)是一种软件许可和交付模式,在这种模式下,软件由第三方提供商托管,并通过网络提供给用户。用户无需将软件安装在本地电脑上,可以直接通过网络访问并使用这些软件服务。 3. Stripe支付处理: Stripe是一个全面的支付平台,允许企业和个人在线接收支付。它提供了一套全面的API,允许开发者集成支付处理功能。Stripe处理包括信用卡支付、ACH转账、Apple Pay和各种其他本地支付方式。 4. Neon PostgreSQL: Neon是一个云原生的PostgreSQL服务,它提供了数据库即服务(DBaaS)的解决方案。Neon使得部署和管理PostgreSQL数据库变得更加容易和灵活。它支持高可用性配置,并提供了自动故障转移和数据备份。 5. TailwindCSS: TailwindCSS是一个实用工具优先的CSS框架,它旨在帮助开发者快速构建可定制的用户界面。它不是一个传统意义上的设计框架,而是一套工具类,允许开发者组合和自定义界面组件而不限制设计。 6. GitHub Actions: GitHub Actions是GitHub推出的一项功能,用于自动化软件开发工作流程。开发者可以在代码仓库中设置工作流程,GitHub将根据代码仓库中的事件(如推送、拉取请求等)自动执行这些工作流程。这使得持续集成和持续部署(CI/CD)变得简单而高效。 7. PostgreSQL: PostgreSQL是一个对象关系数据库管理系统(ORDBMS),它使用SQL作为查询语言。它是开源软件,可以在多种操作系统上运行。PostgreSQL以支持复杂查询、外键、触发器、视图和事务完整性等特性而著称。 8. Git: Git是一个开源的分布式版本控制系统,用于敏捷高效地处理任何或小或大的项目。Git由Linus Torvalds创建,旨在快速高效地处理从小型到大型项目的所有内容。Git是Django项目管理的基石,用于代码版本控制和协作开发。 通过上述知识点的结合,我们可以构建出一个具备现代Web应用程序所需所有关键特性的SaaS应用程序。Django作为后端框架负责处理业务逻辑和数据库交互,而Neon PostgreSQL提供稳定且易于管理的数据库服务。Stripe集成允许处理多种支付方式,使用户能够安全地进行交易。前端使用TailwindCSS进行快速设计,同时GitHub Actions帮助自动化部署流程,确保每次代码更新都能够顺利且快速地部署到生产环境。整体来看,这套资源涵盖了从前端到后端,再到部署和支付处理的完整链条,是构建现代SaaS应用的一套完整解决方案。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

R语言数据处理与GoogleVIS集成:一步步教你绘图

![R语言数据处理与GoogleVIS集成:一步步教你绘图](https://media.geeksforgeeks.org/wp-content/uploads/20200415005945/var2.png) # 1. R语言数据处理基础 在数据分析领域,R语言凭借其强大的统计分析能力和灵活的数据处理功能成为了数据科学家的首选工具。本章将探讨R语言的基本数据处理流程,为后续章节中利用R语言与GoogleVIS集成进行复杂的数据可视化打下坚实的基础。 ## 1.1 R语言概述 R语言是一种开源的编程语言,主要用于统计计算和图形表示。它以数据挖掘和分析为核心,拥有庞大的社区支持和丰富的第
recommend-type

如何使用Matlab实现PSO优化SVM进行多输出回归预测?请提供基本流程和关键步骤。

在研究机器学习和数据预测领域时,掌握如何利用Matlab实现PSO优化SVM算法进行多输出回归预测,是一个非常实用的技能。为了帮助你更好地掌握这一过程,我们推荐资源《PSO-SVM多输出回归预测与Matlab代码实现》。通过学习此资源,你可以了解到如何使用粒子群算法(PSO)来优化支持向量机(SVM)的参数,以便进行多输入多输出的回归预测。 参考资源链接:[PSO-SVM多输出回归预测与Matlab代码实现](https://wenku.csdn.net/doc/3i8iv7nbuw?spm=1055.2569.3001.10343) 首先,你需要安装Matlab环境,并熟悉其基本操作。接
recommend-type

Symfony2框架打造的RESTful问答系统icare-server

资源摘要信息:"icare-server是一个基于Symfony2框架开发的RESTful问答系统。Symfony2是一个使用PHP语言编写的开源框架,遵循MVC(模型-视图-控制器)设计模式。本项目完成于2014年11月18日,标志着其开发周期的结束以及初步的稳定性和可用性。" Symfony2框架是一个成熟的PHP开发平台,它遵循最佳实践,提供了一套完整的工具和组件,用于构建可靠的、可维护的、可扩展的Web应用程序。Symfony2因其灵活性和可扩展性,成为了开发大型应用程序的首选框架之一。 RESTful API( Representational State Transfer的缩写,即表现层状态转换)是一种软件架构风格,用于构建网络应用程序。这种风格的API适用于资源的表示,符合HTTP协议的方法(GET, POST, PUT, DELETE等),并且能够被多种客户端所使用,包括Web浏览器、移动设备以及桌面应用程序。 在本项目中,icare-server作为一个问答系统,它可能具备以下功能: 1. 用户认证和授权:系统可能支持通过OAuth、JWT(JSON Web Tokens)或其他安全机制来进行用户登录和权限验证。 2. 问题的提交与管理:用户可以提交问题,其他用户或者系统管理员可以对问题进行管理,比如标记、编辑、删除等。 3. 回答的提交与管理:用户可以对问题进行回答,回答可以被其他用户投票、评论或者标记为最佳答案。 4. 分类和搜索:问题和答案可能按类别进行组织,并提供搜索功能,以便用户可以快速找到他们感兴趣的问题。 5. RESTful API接口:系统提供RESTful API,便于开发者可以通过标准的HTTP请求与问答系统进行交互,实现数据的读取、创建、更新和删除操作。 Symfony2框架对于RESTful API的开发提供了许多内置支持,例如: - 路由(Routing):Symfony2的路由系统允许开发者定义URL模式,并将它们映射到控制器操作上。 - 请求/响应对象:处理HTTP请求和响应流,为开发RESTful服务提供标准的方法。 - 验证组件:可以用来验证传入请求的数据,并确保数据的完整性和正确性。 - 单元测试:Symfony2鼓励使用PHPUnit进行单元测试,确保RESTful服务的稳定性和可靠性。 对于使用PHP语言的开发者来说,icare-server项目的完成和开源意味着他们可以利用Symfony2框架的优势,快速构建一个功能完备的问答系统。通过学习icare-server项目的代码和文档,开发者可以更好地掌握如何构建RESTful API,并进一步提升自身在Web开发领域的专业技能。同时,该项目作为一个开源项目,其代码结构、设计模式和实现细节等都可以作为学习和实践的最佳范例。 由于icare-server项目完成于2014年,使用的技术栈可能不是最新的,因此在考虑实际应用时,开发者可能需要根据当前的技术趋势和安全要求进行相应的升级和优化。例如,PHP的版本更新可能带来新的语言特性和改进的安全措施,而Symfony2框架本身也在不断地发布新版本和更新补丁,因此维护一个长期稳定的问答系统需要开发者对技术保持持续的关注和学习。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

R语言与GoogleVIS包:打造数据可视化高级图表

![R语言与GoogleVIS包:打造数据可视化高级图表](https://media.geeksforgeeks.org/wp-content/uploads/20230216160916/Screenshot-2023-02-16-160901.jpg) # 1. R语言与GoogleVIS包概述 ## 1.1 R语言简介 R语言作为一款免费且功能强大的统计分析工具,已经成为数据科学领域中的主要语言之一。它不仅能够实现各种复杂的数据分析操作,同时,R语言的社区支持与开源特性,让它在快速迭代和自定义需求方面表现突出。 ## 1.2 GoogleVIS包的介绍 GoogleVIS包是R语言
recommend-type

在三级客户支持体系中,服务台工程师是如何处理日常问题并与其他层次协作以确保IT服务质量和连续性的?

在ITSS认证的三级客户支持体系中,服务台工程师扮演着至关重要的角色,他们负责接收和记录客户问题,并提供初步的解决方案和响应。日常工作中,服务台工程师通常需要执行以下任务: 参考资源链接:[ITSS认证:三级客户支持体系详解与项目经理角色](https://wenku.csdn.net/doc/7yvmbjk863?spm=1055.2569.3001.10343) 1. 问题记录:首先,服务台工程师需要详细记录客户提出的所有问题,确保问题描述清晰完整,并将相关信息录入IT服务管理系统中。 2. 问题分类:根据问题的性质和紧急程度,服务台工程师对问题进行分类,决定是立即解决还是转交给二线专