请解释分析下面这段程序:%%%无序充电投标 clear clc load data_disorder Pch=[Pch_CS1_disorder;Pch_CS2_disorder;Pch_CS3_disorder;Pch_CS4_disorder];%充电站充电功率 %市场出清问题 Link=zeros(24,96);%时段换算矩阵(日前1h换算为实时15min) for i=1:24 Link(i,4*i-3:4*i)=1; end Loadcurve=[0.955391944564747,0.978345604157644,1,0.995019488956258,0.972932005197055,0.970333477695972,0.930489389346037,0.890428757037679,0.902771762667822,0.941966219142486,0.911000433087917,0.862061498484192,0.840190558683413,0.831095712429623,0.756604590731919,0.671719359029883,0.611520138588133,0.582936336076224,0.572542226071893,0.574707665656128,0.587267215244695,0.644218276310091,0.755521870939801,0.884798614118666]; Loadcurve=Loadcurve*Link;%换成96个时段 PL_base=[5.704;5.705;5.631;6.518;4.890;5.705;5.847]*1000;%负荷分布 PL=PL_base*Loadcurve;%基础负荷(负荷曲线从08:00开始算起,即第9个时段) Pf=sdpvar(7,96);%馈线功率 Pf(1,:)=PL(1,:)+Pch(1,:);Pf(2,:)=PL(2,:);Pf(3,:)=PL(3,:);Pf(4,:)=PL(4,:)+Pch(2,:);Pf(5,:)=PL(5,:)+Pch(3,:);Pf(6,:)=PL(6,:);Pf(7,:)=PL(7,:)+Pch(4,:);%馈线功率组成 Pg=sdpvar(10,96);%发电商分段电量 Pg_step=1000*[20,5,3,2,2,2,2,2,2,inf]';%报价区间 Price_DSO=[3:12]'*0.1;%分段电价 Obj=0.25*sum(sum((Price_DSO*ones(1,96)).*Pg));%目标为用电费用最小 Constraint=[0<=Pg<=Pg_step*ones(1,96),sum(Pg)==sum(Pf)];%约束条件 optimize(Constraint,Obj);%求解线性规划问题 Pg=double(Pg);%发电机功率 Pf=double(Pf);%馈线功率 isPg=(Pg>0);%为了计算出清电价,计算发电机分段选择情况 DLMP=sum(isPg)/10+0.2;%出清电价计算 %绘图 figure(1)%节点边际电价 stairs(DLMP); xlabel 时间 ylabel 电价(元/kWh) ylim([0.3,1.3]) figure(2)%负荷曲线 hold on plot(sum(PL)/1000); plot(sum(Pf)/1000,'r.-'); xlabel 时间 ylabel 负荷(MW) legend('基础负荷','无序充电负荷') Cost=sum(sum(Pch).*DLMP);%总用电费用 result_disorder.Cost=Cost;result_disorder.DLMP=DLMP;result_disorder.Pf=Pf;result_disorder.Pg=Pg;%结果保存 save('result_disorder','result_disorder');

时间: 2024-03-29 17:34:20 浏览: 69
这段程序是一个用于电力市场分析的 Matlab 程序。程序首先通过 load 函数载入了一个名为 data_disorder 的数据文件,然后定义了一个充电功率矩阵 Pch,以及一个时段换算矩阵 Link。接着,程序将 Loadcurve 负载曲线换算成 96 个时段,并计算了基础负荷 PL 和馈线功率 Pf。程序使用了 YALMIP 工具箱中的 sdpvar 函数定义了一个发电机功率矩阵 Pg,然后将馈线功率 Pf 和发电机功率 Pg 作为线性规划问题的优化变量,目标函数为电费用,约束条件为发电功率和馈线功率相等。最后,程序通过 optimize 函数对线性规划问题进行求解,并保存了一些结果。程序还绘制了一些图形,包括节点边际电价和负荷曲线等。
相关问题

请解释分析下面这段程序:%%%通过合作方式最优竞标%%% %%%目的是得到参考节点边际电价,以作为参考报价%%% clear clc load data_potential_DA %决策变量 pi_DA=sdpvar(4,96);%投标决策 S=sdpvar(4,96);%广义储能设备电量 Pg=sdpvar(10,96);%发电商分段电量 Pf=sdpvar(7,96);%馈线功率 Pch=sdpvar(4,96);%各充电站出清充电电量 Pdis=sdpvar(4,96);%各充电站出清放电电量 Lagrant_balance=sdpvar(7,96);%功率平衡约束的拉格朗日乘子 DLMP=Lagrant_balance/0.25;%配电网节点边际电价 Lagrant_G=sdpvar(1,96);%平衡节点拉格朗日乘子 Lagrant_G_left=sdpvar(10,96);%发电商电量下界 Lagrant_G_right=sdpvar(10,96);%发电商电量上界 b_Lagrant_G_left=binvar(10,96);%发电商电量下界布尔变量 b_Lagrant_G_right=binvar(10,96);%发电商电量上界布尔变量 Lagrant_L_left=sdpvar(7,96);%线路功率下界 Lagrant_L_right=sdpvar(7,96);%线路功率上界 b_Lagrant_L_left=binvar(7,96);%线路功率上界布尔变量 b_Lagrant_L_right=binvar(7,96);%线路功率下界布尔变量 Lagrant_ch_left=sdpvar(4,96);%充电站充电功率下界 Lagrant_ch_right=sdpvar(4,96);%充电站充电功率上界 b_Lagrant_ch_left=binvar(4,96);%充电站充电功率下界布尔变量 b_Lagrant_ch_right=binvar(4,96);%充电站充电功率上界布尔变量 Lagrant_dis_left=sdpvar(4,96);%充电站放电功率下界 Lagrant_dis_right=sdpvar(4,96);%充电站放电功率上界 b_Lagrant_dis_left=binvar(4,96);%充电站放电功率下界布尔变量 b_Lagrant_dis_right=binvar(4,96);%充电站放电功率上界布尔变量 %基本参数 Link=zeros(24,96);%时段换算矩阵(日前1h换算为实时15min) for i=1:24 Link(i,4*i-3:4*i)=1; end Loadcurve=[0.955391944564747,0.978345604157644,1,0.995019488956258,0.972932005197055,0.970333477695972,0.930489389346037,0.890428757037679,0.902771762667822,0.941966219142486,0.911000433087917,0.862061498484192,0.840190558683413,0.831095712429623,0.756604590731919,0.671719359029883,0.611520138588133,0.582936336076224,0.572542226071893,0.574707665656128,0.587267215244695,0.644218276310091,0.755521870939801,0.884798614118666]; Loadcurve=Loadcurve*Link;%换成96个时段 PL_base=[5.704;5.705;5.631;6.518;4.890;5.705;5.847]*1000;%负荷分布 PL=PL_base*Loadcurve;%基础负荷(负荷曲线从08:00开始算起,即第9个时段) Pf_limit=1000*[40,40,40,40,40,40,40]';%馈线功率限制 Pg_step=1000*[20,5,3,2,2,2,2,2,2,100]';%报价区间 Price_DSO=[3:12]'*0.1;%分段电价 Pchmax=[Forecast_CS1(1,1:96);Forecast_CS2(1,1:96);Forecast_CS3(1,1:96);Forecast_CS4(1,1:96)];%充电站充电报量上限 Pdismax=[Forecast_CS1(2,1:96);Forecast_CS2(2,1:96);Forecast_CS3(2,1:96);Forecast_CS4

这段程序是一个电力市场的投标决策模型,用于计算电力市场参与者的最优报价和交易策略。程序中定义了一些决策变量,如投标决策、广义储能设备电量、发电商分段电量、馈线功率等等,以及一些约束条件,如功率平衡约束、线路功率限制、充电站充放电量限制等等。程序的主要目的是计算出参考节点边际电价,以作为参考报价,并且通过合作方式最优竞标,从而获得最大的收益。程序中还定义了一些基本参数,如时段换算矩阵、负荷曲线、负荷分布、馈线功率限制、报价区间、充电站充电报量上限等等。这些基本参数和决策变量一起构成了整个电力市场的模型。

逐行翻译以下代码: clc clear Data_test=readtable(“附件2:调查数据”); Data_cell=table2cell(Data_test); LabelStr = Data_test.Properties.VariableDescriptions; [m,n] = size(Data_test); Data_out = zeros(m,n); Data_out(:,1) = 1:1:m; for i = 2:22 DataLabel = Data_cell(:,i); DataLabel_cat = categorical(DataLabel); DataLabel_int = double(DataLabel_cat); Data_out(:,i) = DataLabel_int; end mutiStr = {[a,b,c,d,e,f,g,h],[aa,bb,cc],[aaa,bbb,ccc,ddd],[aaaa,bbbb,cccc,dddd],[o,p,q,r,s,t],[oo,pp,qq],[ooo,ppp,qqq,rrr,sss],[w,x,y,z]}; Data_out2 = Data_out; Data_muti = cell(m,length(mutiStr));

该代码的功能是读取名为“附件2:调查数据”的表格文件,将其中的数据转换为数字,并将转换后的数据储存在一个名为“Data_out”的矩阵中。同时,代码还创建了一个名为“mutiStr”的单元数组,该数组包含了8个字符串数组。最后,代码还创建了一个名为“Data_muti”的单元数组,该数组大小为(m,length(mutiStr)),即行数为数据表格的行数,列数为字符串数组的个数。 逐行翻译如下: clc % 清空命令窗口 clear % 清除工作空间变量 Data_test = readtable("附件2:调查数据"); % 读取名为“附件2:调查数据”的表格文件,将数据存储在Data_test中 Data_cell = table2cell(Data_test); % 将Data_test转换为单元格数组,存储在Data_cell中 LabelStr = Data_test.Properties.VariableDescriptions; % 获取表格的变量描述信息,存储在LabelStr中 [m,n] = size(Data_test); % 获取Data_test的行列数,分别存储在m和n中 Data_out = zeros(m,n); % 创建一个大小为(m,n)的零矩阵Data_out Data_out(:,1) = 1:1:m; % 将Data_out的第一列赋值为1~m的整数 for i = 2:22 % 循环遍历Data_cell的列数,从第二列到第22列 DataLabel = Data_cell(:,i); % 获取Data_cell的第i列数据,存储在DataLabel中 DataLabel_cat = categorical(DataLabel); % 将DataLabel转换为分类数组,存储在DataLabel_cat中 DataLabel_int = double(DataLabel_cat); % 将DataLabel_cat转换为双精度数值数组,存储在DataLabel_int中 Data_out(:,i) = DataLabel_int; % 将DataLabel_int的数据赋值给Data_out的第i列 end mutiStr = {[a,b,c,d,e,f,g,h],[aa,bb,cc],[aaa,bbb,ccc,ddd],[aaaa,bbbb,cccc,dddd],[o,p,q,r,s,t],[oo,pp,qq],[ooo,ppp,qqq,rrr,sss],[w,x,y,z]}; % 创建一个大小为1x8的单元数组mutiStr,其中包含8个字符串数组 Data_out2 = Data_out; % 将Data_out赋值给Data_out2 Data_muti = cell(m,length(mutiStr)); % 创建一个大小为(m,length(mutiStr))的单元数组Data_muti
阅读全文

相关推荐

%% OFDM系统代码 clc; clear all; close all; %% 参数设置 N = 64; % 子载波数 cp = 16; % 循环前缀长度 num_bits = 10000; % 数据位数 qam_order = 16; % 调制阶数 snr_db = 10; % 信噪比 %% 数据生成 data = randi([0 1],1,num_bits); % 生成随机二进制数据 %% 调制 mod_data = qammod(data,qam_order); % QAM调制 %% 串并转换 mod_data_matrix = reshape(mod_data,N,num_bits/N).'; % 将调制后的数据串并转换为矩阵形式 %% 循环前缀插入 cp_data_matrix = [mod_data_matrix(:,(end-cp+1):end) mod_data_matrix]; % 插入循环前缀 %% IFFT变换 tx_signal_matrix = ifft(cp_data_matrix,N,2); % 对每个时隙进行IFFT变换 %% 并串转换 tx_signal = reshape(tx_signal_matrix.',1,numel(tx_signal_matrix)); % 将IFFT变换后的信号并串转换为向量形式 %% 信道传输 rx_signal = awgn(tx_signal,snr_db); % 加入高斯噪声 %% 串并转换 rx_signal_matrix = reshape(rx_signal,N+cp,num_bits/N+1).'; % 将接收到的信号串并转换为矩阵形式 %% 循环前缀删除 rx_data_matrix = rx_signal_matrix(:,(cp+1):end); % 删除循环前缀 %% FFT变换 rx_mod_data_matrix = fft(rx_data_matrix,N,2); % 对每个时隙进行FFT变换 %% 并串转换 rx_mod_data = reshape(rx_mod_data_matrix.',1,numel(rx_mod_data_matrix)); % 将FFT变换后的信号并串转换为向量形式 %% 解调 rx_data = qamdemod(rx_mod_data,qam_order); % 解调 %% 误码率计算 num_errors = sum(data~=rx_data); % 统计误码数 ber = num_errors/num_bits; % 计算误码率 %% 结果展示 disp(['信噪比:',num2str(snr_db),'dB']); disp(['误码率:',num2str(ber)]);请补充完整以上代码

请逐句解释分析下面这段程序:%用yalmip的kkt命令 clear clc %参数 price_day_ahead=[0.35;0.33;0.3;0.33;0.36;0.4;0.44;0.46;0.52;0.58;0.66;0.75;0.81;0.76;0.8;0.83;0.81;0.75;0.64;0.55;0.53;0.47;0.40;0.37]; price_b=1.2*price_day_ahead; price_s=0.8*price_day_ahead; lb=0.8*price_day_ahead; ub=1.2*price_day_ahead; T_1=[1;1;1;1;1;1;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;1;1;1]; T_2=[1;1;1;1;1;1;1;1;0;0;0;0;1;1;1;0;0;0;0;1;1;1;1;1]; T_3=[0;0;0;0;0;0;0;1;1;1;1;1;1;1;1;1;1;1;1;1;0;0;0;0]; index1=find(T_1==0);index2=find(T_2==0);index3=find(T_3==0); %定义变量 Ce=sdpvar(24,1);%电价 z=binvar(24,1);%购售电状态 u=binvar(24,1);%储能状态 Pb=sdpvar(24,1);%日前购电 Pb_day=sdpvar(24,1);%实时购电 Ps_day=sdpvar(24,1);%实时售电 Pdis=sdpvar(24,1);%储能放电 Pch=sdpvar(24,1);%储能充电 Pc1=sdpvar(24,1);%一类车充电功率 Pc2=sdpvar(24,1);%二类车充电功率 Pc3=sdpvar(24,1);%三类车充电功率 S=sdpvar(24,1);%储荷容量 for t=2:24 S(t)=S(t-1)+0.9*Pch(t)-Pdis(t)/0.9; end %内层 CI=[sum(Pc1)==50*(0.9*24-9.6),sum(Pc2)==20*(0.9*24-9.6),sum(Pc3)==10*(0.9*24-9.6),Pc1>=0,Pc2>=0,Pc3>=0,Pc1<=50*3,Pc2<=20*3,Pc3<=10*3,Pc1(index1)==0,Pc2(index2)==0,Pc3(index3)==0];%电量需求约束 OI=sum(Ce.*(Pc1+Pc2+Pc3)); ops=sdpsettings('solver','gurobi','kkt.dualbounds',0); [K,details] = kkt(CI,OI,Ce,ops);%建立KKT系统,Ce为参量 %外层 CO=[lb<=Ce<=ub,mean(Ce)==0.5,Pb>=0,Ps_day<=Pdis,Pb_day>=0,Pb_day<=1000*z,Ps_day>=0,Ps_day<=1000*(1-z),Pch>=0,Pch<=1000*u,Pdis>=0,Pdis<=1000*(1-u)];%边界约束 CO=[CO,Pc1+Pc2+Pc3+Pch-Pdis==Pb+Pb_day-Ps_day];%能量平衡 CO=[CO,sum(0.9*Pch-Pdis/0.9)==0,S(24)==2500,S>=0,S<=5000];%SOC约束 OO=-(details.b'*details.dual+details.f'*details.dualeq)+sum(price_s.*Ps_day-price_day_ahead.*Pb-price_b.*Pb_day);%目标函数 optimize([K,CI,CO,boundingbox([CI,CO]),details.dual<=1],-OO) Ce=value(Ce);%电价 Pb=value(Pb);%日前购电 Pb_day=value(Pb_day);%实时购电 Ps_day=value(Ps_day);%实时购电 Pdis=value(Pdis);%储能放电 Pch=value( Pch);%储能充电 Pb_day=value(Pb_day);%实时购电 Pb_day=value(Pb_day);%实时购电 Pc1=value(Pc1);%一类车充电功率 Pc2=value(Pc2);%二类车充电功率 Pc3=value(Pc3);%三类车充电功率 S=value(S);%储荷容量 figure(1) plot(Pc1,'-*','linewidth',1.5) grid hold on plot(Pc2,'-*','linewidth',1.5) hold o

请解释下面这段程序:%用yalmip的kkt命令 clear clc %参数 price_day_ahead=[0.35;0.33;0.3;0.33;0.36;0.4;0.44;0.46;0.52;0.58;0.66;0.75;0.81;0.76;0.8;0.83;0.81;0.75;0.64;0.55;0.53;0.47;0.40;0.37]; price_b=1.2*price_day_ahead; price_s=0.8*price_day_ahead; lb=0.8*price_day_ahead; ub=1.2*price_day_ahead; T_1=[1;1;1;1;1;1;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;1;1;1]; T_2=[1;1;1;1;1;1;1;1;0;0;0;0;1;1;1;0;0;0;0;1;1;1;1;1]; T_3=[0;0;0;0;0;0;0;1;1;1;1;1;1;1;1;1;1;1;1;1;0;0;0;0]; index1=find(T_1==0);index2=find(T_2==0);index3=find(T_3==0); %定义变量 Ce=sdpvar(24,1);%电价 z=binvar(24,1);%购售电状态 u=binvar(24,1);%储能状态 Pb=sdpvar(24,1);%日前购电 Pb_day=sdpvar(24,1);%实时购电 Ps_day=sdpvar(24,1);%实时售电 Pdis=sdpvar(24,1);%储能放电 Pch=sdpvar(24,1);%储能充电 Pc1=sdpvar(24,1);%一类车充电功率 Pc2=sdpvar(24,1);%二类车充电功率 Pc3=sdpvar(24,1);%三类车充电功率 S=sdpvar(24,1);%储荷容量 for t=2:24 S(t)=S(t-1)+0.9*Pch(t)-Pdis(t)/0.9; end %内层 CI=[sum(Pc1)==50*(0.9*24-9.6),sum(Pc2)==20*(0.9*24-9.6),sum(Pc3)==10*(0.9*24-9.6),Pc1>=0,Pc2>=0,Pc3>=0,Pc1<=50*3,Pc2<=20*3,Pc3<=10*3,Pc1(index1)==0,Pc2(index2)==0,Pc3(index3)==0];%电量需求约束 OI=sum(Ce.*(Pc1+Pc2+Pc3)); ops=sdpsettings('solver','gurobi','kkt.dualbounds',0); [K,details] = kkt(CI,OI,Ce,ops);%建立KKT系统,Ce为参量 %外层 CO=[lb<=Ce<=ub,mean(Ce)==0.5,Pb>=0,Ps_day<=Pdis,Pb_day>=0,Pb_day<=1000*z,Ps_day>=0,Ps_day<=1000*(1-z),Pch>=0,Pch<=1000*u,Pdis>=0,Pdis<=1000*(1-u)];%边界约束 CO=[CO,Pc1+Pc2+Pc3+Pch-Pdis==Pb+Pb_day-Ps_day];%能量平衡 CO=[CO,sum(0.9*Pch-Pdis/0.9)==0,S(24)==2500,S>=0,S<=5000];%SOC约束 OO=-(details.b'*details.dual+details.f'*details.dualeq)+sum(price_s.*Ps_day-price_day_ahead.*Pb-price_b.*Pb_day);%目标函数 optimize([K,CI,CO,boundingbox([CI,CO]),details.dual<=1],-OO) Ce=value(Ce);%电价 Pb=value(Pb);%日前购电 Pb_day=value(Pb_day);%实时购电 Ps_day=value(Ps_day);%实时购电 Pdis=value(Pdis);%储能放电 Pch=value( Pch);%储能充电 Pb_day=value(Pb_day);%实时购电 Pb_day=value(Pb_day);%实时购电 Pc1=value(Pc1);%一类车充电功率 Pc2=value(Pc2);%二类车充电功率 Pc3=value(Pc3);%三类车充电功率 S=value(S);%储荷容量 figure(1) plot(Pc1,'-*','linewidth',1.5) grid hold on plot(Pc2,'-*','linewidth',1.5) hold o

clc; clear; close all; % 定义参数 fc = 2e3; % 载波频率 fs = 64 * fc; % 采样频率 T = 8 / fc; % 基带信号周期 Ts = 1 / (2 * fc); % 输入信号周期 B = 0.5 / T; % 基带带宽 BbTb = 0.5; % 3dB带宽 % 生成数字序列和基带信号 data = [0 0 1 0 1 0 1 0]; baseband = generate_baseband(data, fs, T); % GMSK调制 modulated_signal = gmsk_modulation(baseband, fc, fs, B, BbTb); % 绘制调制后的波形 figure(1); t = 0:1/fs:length(modulated_signal)/fs-1/fs; plot(t, modulated_signal); xlabel('时间/s'); ylabel('幅度'); title('GMSK调制波形00101010'); % 生成基带信号的函数 % 输入参数: % data: 数字序列 % fs: 采样频率 % T: 基带信号周期 % 输出参数: % baseband: 基带信号 function baseband = generate_baseband(data, fs, T) baseband = zeros(1, length(data) * fs * T); for i = 1:length(data) if data(i) == 0 baseband((i-1)*fs*T+1:i*fs*T) = -1; else baseband((i-1)*fs*T+1:i*fs*T) = 1; end end end % GMSK调制的函数 % 输入参数: % baseband: 基带信号 % fc: 载波频率 % fs: 采样频率 % B: 基带带宽 % BbTb: 3dB带宽 % 输出参数: % modulated_signal: 调制信号 function modulated_signal = gmsk_modulation(baseband, fc, fs, B, BbTb) kf = B / (2*pi); % 调制指数 bt = 0:1/fs:length(baseband)/fs-1/fs; % 基带信号时间序列 gaussian = gausspuls(bt, B/(2*pi*BbTb), 2.5); % 高斯滤波器 baseband_f = filter(gaussian, 1, baseband); % 进行滤波 cumulative_freq = cumsum(baseband_f) / fs * kf; % 计算累积频偏 t = 0:1/fs:length(baseband_f)/fs-1/fs; % 调制信号时间序列 phasor = exp(1j*(2*pi*fc*t + 2*pi*cumulative_freq)); % 产生载波相位 modulated_signal = real(baseband_f .* phasor); % 进行相乘运算,得到调制信号 end % 自定义高斯滤波器函数 % 输入参数: % t: 时间序列 % B: 带宽 % alpha: 音频信号系数 % 输出参数: % g: 高斯函数 function gaussian = gausspuls(t, B, alpha) gaussian = (2 * pi * B * t) .^ alpha .* exp(-(2 * pi * B * t) .^ 2 / (2 * log(2))); end

clear all; close all; clc;ticits_option = 2;noise_option = 1;raw_bit_len = 2592-6;interleaving_num = 72;deinterleaving_num = 72;N_frame = 1e4;SNRdBs = [0:2:20];sq05 = sqrt(0.5);bits_options = [0, 1, 2]; % 三种bits-option情况obe_target = 500;BER_target = 1e-3;for i_bits = 1:length(bits_options) bits_option = bits_options(i_bits); BER = zeros(size(SNRdBs)); for i_SNR = 1:length(SNRdBs) sig_power = 1; SNRdB = SNRdBs(i_SNR); sigma2 = sig_power * 10^(-SNRdB/10); sigma = sqrt(sigma2/2); nobe = 0; for i_frame = 1:N_frame switch bits_option case 0 bits = zeros(1, raw_bit_len); case 1 bits = ones(1, raw_bit_len); case 2 bits = randi([0,1], 1, raw_bit_len); end encoding_bits = convolution_encoder(bits); interleaved = []; for i = 1:interleaving_num interleaved = [interleaved encoding_bits([i:interleaving_num:end])]; end temp_bit = []; for tx_time = 1:648 tx_bits = interleaved(1:8); interleaved(1:8) = []; QAM16_symbol = QAM16_mod(tx_bits, 2); x(1,1) = QAM16_symbol(1); x(2,1) = QAM16_symbol(2); if rem(tx_time - 1, 81) == 0 H = sq05 * (randn(2,2) + j * randn(2,2)); end y = H * x; if noise_option == 1 noise = sigma * (randn(2,1) + j * randn(2,1)); y = y + noise; end W = inv(H' * H + sigma2 * diag(ones(1,2))) * H'; K_tilde = W * y; x_hat = QAM16_slicer(K_tilde, 2); temp_bit = [temp_bit QAM16_demapper(x_hat, 2)]; end deinterleaved = []; for i = 1:deinterleaving_num deinterleaved = [deinterleaved temp_bit([i:deinterleaving_num:end])]; end received_bit = Viterbi_decode(deinterleaved); for EC_dummy = 1:1:raw_bit_len if nobe >= obe_target break; end if received_bit(EC_dummy) ~= bits(EC_dummy) nobe = nobe + 1; end end if nobe >= obe_target break; end end BER(i_SNR) = nobe / (i_frame * raw_bit_len); fprintf('bits-option: %d, SNR: %d dB, BER: %1.4f\n', bits_option, SNRdB, BER(i_SNR)); end figure; semilogy(SNRdBs, BER); xlabel('SNR (dB)'); ylabel('BER'); title(['Bits-Option: ', num2str(bits_option)]); grid on;end注释这段matlab代码

最新推荐

recommend-type

PIC18F27_47Q10中文数据手册.pdf

- **可配置逻辑单元(CLC)**:自定义组合和顺序逻辑电路,增加了设计的灵活性。 - **互补波形发生器(CWG)**:适用于全桥、半桥和单通道驱动,支持上升沿和下降沿死区控制。 - **捕捉/比较/PWM模块(CCP)**:2个...
recommend-type

数据库基础测验20241113.doc

数据库基础测验20241113.doc
recommend-type

微信小程序下拉选择组件

微信小程序下拉选择组件
recommend-type

DICOM文件+DX放射平片-数字X射线图像DICOM测试文件

DICOM文件+DX放射平片—数字X射线图像DICOM测试文件,文件为.dcm类型DICOM图像文件文件,仅供需要了解DICOM或相关DICOM开发的技术人员当作测试数据或研究使用,请勿用于非法用途。
recommend-type

黑板风格计算机毕业答辩PPT模板下载

资源摘要信息:"创意经典黑板风格毕业答辩论文课题报告动态ppt模板" 在当前数字化教学与展示需求日益增长的背景下,PPT模板成为了表达和呈现学术成果及教学内容的重要工具。特别针对计算机专业的学生而言,毕业设计的答辩PPT不仅仅是一个展示的平台,更是其设计能力、逻辑思维和审美观的综合体现。因此,一个恰当且创意十足的PPT模板显得尤为重要。 本资源名为“创意经典黑板风格毕业答辩论文课题报告动态ppt模板”,这表明该模板具有以下特点: 1. **创意设计**:模板采用了“黑板风格”的设计元素,这种风格通常模拟传统的黑板书写效果,能够营造一种亲近、随性的学术氛围。该风格的模板能够帮助展示者更容易地吸引观众的注意力,并引发共鸣。 2. **适应性强**:标题表明这是一个毕业答辩用的模板,它适用于计算机专业及其他相关专业的学生用于毕业设计课题的汇报。模板中设计的版式和内容布局应该是灵活多变的,以适应不同课题的展示需求。 3. **动态效果**:动态效果能够使演示内容更富吸引力,模板可能包含了多种动态过渡效果、动画效果等,使得展示过程生动且充满趣味性,有助于突出重点并维持观众的兴趣。 4. **专业性质**:由于是毕业设计用的模板,因此该模板在设计时应充分考虑了计算机专业的特点,可能包括相关的图表、代码展示、流程图、数据可视化等元素,以帮助学生更好地展示其研究成果和技术细节。 5. **易于编辑**:一个良好的模板应具备易于编辑的特性,这样使用者才能根据自己的需要进行调整,比如替换文本、修改颜色主题、更改图片和图表等,以确保最终展示的个性和专业性。 结合以上特点,模板的使用场景可以包括但不限于以下几种: - 计算机科学与技术专业的学生毕业设计汇报。 - 计算机工程与应用专业的学生论文展示。 - 软件工程或信息技术专业的学生课题研究成果展示。 - 任何需要进行学术成果汇报的场合,比如研讨会议、学术交流会等。 对于计算机专业的学生来说,毕业设计不仅仅是完成一个课题,更重要的是通过这个过程学会如何系统地整理和表述自己的思想。因此,一份好的PPT模板能够帮助他们更好地完成这个任务,同时也能够展现出他们的专业素养和对细节的关注。 此外,考虑到模板是一个压缩文件包(.zip格式),用户在使用前需要解压缩,解压缩后得到的文件为“创意经典黑板风格毕业答辩论文课题报告动态ppt模板.pptx”,这是一个可以直接在PowerPoint软件中打开和编辑的演示文稿文件。用户可以根据自己的具体需要,在模板的基础上进行修改和补充,以制作出一个具有个性化特色的毕业设计答辩PPT。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

提升点阵式液晶显示屏效率技术

![点阵式液晶显示屏显示程序设计](https://iot-book.github.io/23_%E5%8F%AF%E8%A7%81%E5%85%89%E6%84%9F%E7%9F%A5/S3_%E8%A2%AB%E5%8A%A8%E5%BC%8F/fig/%E8%A2%AB%E5%8A%A8%E6%A0%87%E7%AD%BE.png) # 1. 点阵式液晶显示屏基础与效率挑战 在现代信息技术的浪潮中,点阵式液晶显示屏作为核心显示技术之一,已被广泛应用于从智能手机到工业控制等多个领域。本章节将介绍点阵式液晶显示屏的基础知识,并探讨其在提升显示效率过程中面临的挑战。 ## 1.1 点阵式显
recommend-type

在SoC芯片的射频测试中,ATE设备通常如何执行系统级测试以保证芯片量产的质量和性能一致?

SoC芯片的射频测试是确保无线通信设备性能的关键环节。为了在量产阶段保证芯片的质量和性能一致性,ATE(Automatic Test Equipment)设备通常会执行一系列系统级测试。这些测试不仅关注芯片的电气参数,还包含电磁兼容性和射频信号的完整性检验。在ATE测试中,会根据芯片设计的规格要求,编写定制化的测试脚本,这些脚本能够模拟真实的无线通信环境,检验芯片的射频部分是否能够准确处理信号。系统级测试涉及对芯片基带算法的验证,确保其能够有效执行无线信号的调制解调。测试过程中,ATE设备会自动采集数据并分析结果,对于不符合标准的芯片,系统能够自动标记或剔除,从而提高测试效率和减少故障率。为了
recommend-type

CodeSandbox实现ListView快速创建指南

资源摘要信息:"listview:用CodeSandbox创建" 知识点一:CodeSandbox介绍 CodeSandbox是一个在线代码编辑器,专门为网页应用和组件的快速开发而设计。它允许用户即时预览代码更改的效果,并支持多种前端开发技术栈,如React、Vue、Angular等。CodeSandbox的特点是易于使用,支持团队协作,以及能够直接在浏览器中编写代码,无需安装任何软件。因此,它非常适合初学者和快速原型开发。 知识点二:ListView组件 ListView是一种常用的用户界面组件,主要用于以列表形式展示一系列的信息项。在前端开发中,ListView经常用于展示从数据库或API获取的数据。其核心作用是提供清晰的、结构化的信息展示方式,以便用户可以方便地浏览和查找相关信息。 知识点三:用JavaScript创建ListView 在JavaScript中创建ListView通常涉及以下几个步骤: 1. 创建HTML的ul元素作为列表容器。 2. 使用JavaScript的DOM操作方法(如document.createElement, appendChild等)动态创建列表项(li元素)。 3. 将创建的列表项添加到ul容器中。 4. 通过CSS来设置列表和列表项的样式,使其符合设计要求。 5. (可选)为ListView添加交互功能,如点击事件处理,以实现更丰富的用户体验。 知识点四:在CodeSandbox中创建ListView 在CodeSandbox中创建ListView可以简化开发流程,因为它提供了一个在线环境来编写代码,并且支持实时预览。以下是使用CodeSandbox创建ListView的简要步骤: 1. 打开CodeSandbox官网,创建一个新的项目。 2. 在项目中创建或编辑HTML文件,添加用于展示ListView的ul元素。 3. 创建或编辑JavaScript文件,编写代码动态生成列表项,并将它们添加到ul容器中。 4. 使用CodeSandbox提供的实时预览功能,即时查看ListView的效果。 5. 若有需要,继续编辑或添加样式文件(通常是CSS),对ListView进行美化。 6. 利用CodeSandbox的版本控制功能,保存工作进度和团队协作。 知识点五:实践案例分析——listview-main 文件名"listview-main"暗示这可能是一个展示如何使用CodeSandbox创建基本ListView的项目。在这个项目中,开发者可能会包含以下内容: 1. 使用React框架创建ListView的示例代码,因为React是目前较为流行的前端库。 2. 展示如何将从API获取的数据渲染到ListView中,包括数据的获取、处理和展示。 3. 提供基本的样式设置,展示如何使用CSS来美化ListView。 4. 介绍如何在CodeSandbox中组织项目结构,例如如何分离组件、样式和脚本文件。 5. 包含一个简单的用户交互示例,例如点击列表项时弹出详细信息等。 总结来说,通过标题“listview:用CodeSandbox创建”,我们了解到本资源是一个关于如何利用CodeSandbox这个在线开发环境,来快速实现一个基于JavaScript的ListView组件的教程或示例项目。通过上述知识点的梳理,可以加深对如何创建ListView组件、CodeSandbox平台的使用方法以及如何在该平台中实现具体功能的理解。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依