双层bilstm源码python
时间: 2023-11-27 18:47:24 浏览: 71
以下是一个双层BiLSTM的Python源代码示例:
```python
import torch
import torch.nn as nn
class BiLSTM(nn.Module):
def __init__(self, input_size, hidden_size, num_layers, num_classes):
super(BiLSTM, self).__init__()
self.hidden_size = hidden_size
self.num_layers = num_layers
self.lstm = nn.LSTM(input_size, hidden_size, num_layers, batch_first=True, bidirectional=True)
self.fc = nn.Linear(hidden_size*2, num_classes)
def forward(self, x):
h0 = torch.zeros(self.num_layers*2, x.size(0), self.hidden_size).to(device=x.device)
c0 = torch.zeros(self.num_layers*2, x.size(0), self.hidden_size).to(device=x.device)
out, _ = self.lstm(x, (h0, c0))
out = out.contiguous().view(x.size(0), -1, self.hidden_size*2)
out = torch.mean(out, dim=1)
out = self.fc(out)
return out
```
该模型使用PyTorch实现,包含两个BiLSTM层和一个全连接层。其中,`input_size`表示输入特征的维度,`hidden_size`表示LSTM隐藏层的维度,`num_layers`表示LSTM的层数,`num_classes`表示输出类别的数量。
在`forward`函数中,我们首先初始化LSTM的初始隐藏状态和细胞状态,然后将输入`x`传入LSTM中。接着,我们将LSTM的输出`out`进行维度变换,使其符合全连接层的输入要求。最后,我们使用全连接层将LSTM的输出映射到输出类别上。
阅读全文