粒子滤波为什么要进行重采样
时间: 2024-01-05 12:04:21 浏览: 82
粒子滤波是一种基于蒙特卡洛方法的滤波算法,它通过在状态空间中产生一组粒子来近似概率分布。在每个时间步骤中,粒子根据其权重被重新采样,以使更多的粒子聚集在高概率区域,从而提高估计的准确性。
如果不进行重采样,那么在滤波过程中,一些粒子的权重会变得非常小,甚至接近于零。这些粒子对于表示概率分布的样本集合来说是没有意义的,因为它们不再代表概率分布的任何部分。另一方面,一些粒子的权重会变得非常大,这些粒子会在下一个时间步骤中占据所有样本的大部分,从而导致估计的方差变大。
通过重采样,可以保留高权重粒子并且减少低权重粒子的数量,从而保持样本的多样性并且提高估计的准确性。
相关问题
粒子滤波四种基本重采样代码
粒子滤波中的重采样是非常重要的一步,可以使得粒子在一定程度上避免漂移。以下是四种基本的重采样代码:
1. Systematic Resampling(系统重采样)
```python
def systematic_resampling(particles, weights):
N = len(weights)
positions = (np.arange(N) + np.random.uniform()) / N
indexes = np.zeros(N, 'i')
cumulative_sum = np.cumsum(weights)
i, j = 0, 0
while i < N and j < N:
if positions[i] < cumulative_sum[j]:
indexes[i] = j
i += 1
else:
j += 1
return particles[indexes]
```
2. Multinomial Resampling(多项式重采样)
```python
def multinomial_resampling(particles, weights):
indexes = np.zeros(len(weights), 'i')
cumulative_sum = np.cumsum(weights)
cumulative_sum[-1] = 1. # avoid round-off errors
for i in range(len(weights)):
indexes[i] = np.searchsorted(cumulative_sum, np.random.uniform())
return particles[indexes]
```
3. Residual Resampling(残余重采样)
```python
def residual_resampling(particles, weights):
N = len(weights)
indexes = np.zeros(N, 'i')
# determine integer parts for each weight
num_copies = (N * weights).astype(int)
k = 0
for i in range(N):
for _ in range(num_copies[i]):
indexes[k] = i
k += 1
# use multinomial resample on the residual to fill up the rest.
residual = weights - num_copies # get fractional part
residual /= sum(residual) # normalize
cumulative_sum = np.cumsum(residual)
cumulative_sum[-1] = 1. # avoid round-off errors
for i in range(k, N):
indexes[i] = np.searchsorted(cumulative_sum, np.random.uniform())
return particles[indexes]
```
4. Stratified Resampling(分层重采样)
```python
def stratified_resampling(particles, weights):
N = len(weights)
# make N subdivisions, and chose a random position within each one
positions = (np.random.uniform(0, 1, N) + range(N)) / N
indexes = np.zeros(N, 'i')
cumulative_sum = np.cumsum(weights)
i, j = 0, 0
while i < N and j < N:
if positions[i] < cumulative_sum[j]:
indexes[i] = j
i += 1
else:
j += 1
return particles[indexes]
```
粒子滤波四种基本重采样实例代码
以下是基于Python的四种基本重采样算法的代码实现:
1. 系统重采样
```python
import numpy as np
def system_resampling(particles, weights):
n_particles = len(weights)
cum_weights = np.cumsum(weights)
cum_weights[-1] = 1.0
indexes = np.zeros(n_particles, dtype=int)
u0 = np.random.uniform(0, 1/n_particles)
j = 0
for i in range(n_particles):
u = u0 + i/n_particles
while u > cum_weights[j]:
j += 1
indexes[i] = j
return particles[indexes]
```
2. 伯努利重采样
```python
import numpy as np
def bernoulli_resampling(particles, weights):
n_particles = len(weights)
cum_weights = np.cumsum(weights)
cum_weights[-1] = 1.0
indexes = np.zeros(n_particles, dtype=int)
u = np.random.uniform(0, 1/n_particles)
j = 0
for i in range(n_particles):
u += np.random.uniform(0, 1/n_particles)
while u > cum_weights[j]:
j += 1
indexes[i] = j
return particles[indexes]
```
3. 残差重采样
```python
import numpy as np
def residual_resampling(particles, weights):
n_particles = len(weights)
indexes = np.zeros(n_particles, dtype=int)
cum_weights = np.cumsum(weights)
cum_weights[-1] = 1.0
step = 1.0/n_particles
u = np.random.uniform(0, step)
j = 0
for i in range(n_particles):
while u > cum_weights[j]:
j += 1
indexes[i] = j
u += step
return particles[indexes]
```
4. 分层重采样
```python
import numpy as np
def stratified_resampling(particles, weights):
n_particles = len(weights)
indexes = np.zeros(n_particles, dtype=int)
cum_weights = np.cumsum(weights)
cum_weights[-1] = 1.0
step = 1.0/n_particles
u = np.random.uniform(0, step)
j = 0
for i in range(n_particles):
while u > cum_weights[j]:
j += 1
indexes[i] = j
u += step
return particles[indexes]
```
注意:以上代码中,`particles`表示粒子集合,`weights`表示对应的权重。在系统重采样、伯努利重采样和残差重采样中,`cum_weights`表示累计权重,`indexes`表示选择的粒子下标。在分层重采样中,`step`表示步长。
阅读全文