pytorch使用正则化
时间: 2023-06-30 20:25:34 浏览: 109
pytorch-lasso:使用PyTorch的L1正则化最小二乘
PyTorch中使用正则化可以通过在模型的定义中加入相应的正则化项来实现。常见的正则化方法有L1正则化和L2正则化。
以L2正则化为例,可以在模型定义中的优化器中添加weight_decay参数,即可实现L2正则化。具体代码如下:
```python
import torch
import torch.nn as nn
import torch.optim as optim
class Net(nn.Module):
def __init__(self):
super(Net, self).__init__()
self.conv1 = nn.Conv2d(3, 6, 5)
self.pool = nn.MaxPool2d(2, 2)
self.conv2 = nn.Conv2d(6, 16, 5)
self.fc1 = nn.Linear(16 * 5 * 5, 120)
self.fc2 = nn.Linear(120, 84)
self.fc3 = nn.Linear(84, 10)
def forward(self, x):
x = self.pool(F.relu(self.conv1(x)))
x = self.pool(F.relu(self.conv2(x)))
x = x.view(-1, 16 * 5 * 5)
x = F.relu(self.fc1(x))
x = F.relu(self.fc2(x))
x = self.fc3(x)
return x
# 定义模型
net = Net()
# 定义损失函数和优化器
criterion = nn.CrossEntropyLoss()
optimizer = optim.SGD(net.parameters(), lr=0.001, momentum=0.9, weight_decay=0.001)
# 训练模型
for epoch in range(10): # 多批次循环
running_loss = 0.0
for i, data in enumerate(trainloader, 0):
# 获取输入
inputs, labels = data
# 梯度清零
optimizer.zero_grad()
# 正向传播,反向传播,优化
outputs = net(inputs)
loss = criterion(outputs, labels)
loss.backward()
optimizer.step()
# 统计损失值
running_loss += loss.item()
if i % 2000 == 1999: # 每2000批次打印一次平均损失值
print('[%d, %5d] loss: %.3f' %
(epoch + 1, i + 1, running_loss / 2000))
running_loss = 0.0
print('Finished Training')
```
在优化器中设置weight_decay参数即可实现L2正则化。其中weight_decay参数的值越大,L2正则化的程度越大。
阅读全文