基于BP神经网络自适应控制PID控制器Matlab代码

时间: 2023-07-12 08:29:14 浏览: 45
下面是一个基于BP神经网络自适应控制PID控制器的Matlab代码示例: ```matlab % 定义BP神经网络 input_nodes = 1; hidden_nodes = 4; output_nodes = 1; nn = feedforwardnet(hidden_nodes); % 定义PID控制器参数 Kp = 0.5; Ki = 0.1; Kd = 0.05; % 初始化误差、误差积分、误差微分 error = 0; error_integral = 0; error_derivative = 0; % 初始化上一次误差 prev_error = 0; % 定义控制器输出 output = 0; % 循环控制 for i = 1:N % 计算误差 error = set_point - process_variable(i); % 计算误差积分 error_integral = error_integral + error; % 计算误差微分 error_derivative = error - prev_error; % 计算控制器输出 output = Kp * error + Ki * error_integral + Kd * error_derivative; % 使用BP神经网络对控制器输出进行调整 nn_output = sim(nn, output); output = nn_output(1); % 更新上一次误差 prev_error = error; % 更新控制信号 control_signal(i) = output; end ``` 以上代码中,我们使用了Matlab自带的feedforwardnet函数定义了一个简单的BP神经网络,并且定义了PID控制器的参数和误差、误差积分、误差微分等参数的计算方法。在循环控制中,我们不断更新控制器输出,并使用BP神经网络对其进行调整,以达到自适应控制的效果。

相关推荐

### 回答1: 基于s函数的bp神经网络pid控制器是一种控制器,它使用了bp神经网络和pid控制算法来实现对系统的控制。在Simulink中,可以使用s函数来实现这种控制器,并进行仿真。通过仿真可以验证控制器的性能和稳定性,以及优化控制参数。 ### 回答2: BP神经网络是一种常用的人工神经网络,广泛应用于控制、分类、映射等领域。PID控制器是一种常用的控制器,具有简单、稳定、易实现等优点。将BP神经网络与PID控制器结合起来,可得到BP神经网络PID控制器,该控制器不仅具有PID控制器的优点,还能通过神经网络学习调整自身的权重和偏置,实现更加精准的控制。 在实现BP神经网络PID控制器之前,需先建立神经网络模型。以单输入单输出为例,设控制目标为y,控制器输出为u,则输入为e=y-d,其中d为设定值。神经网络的每一层包括若干个神经元,每个神经元都有一个输入、一个输出和一组权重。假设BP神经网络包括输入层、隐层和输出层,则神经元的输入可以表示为: $net_j=\sum_{i=1}^nx_iw_{ij}+b_j$ 其中,$x_i$为输入数据,$w_{ij}$为连接第$i$个输入与第$j$个神经元的权重,$b_j$为第$j$个神经元的偏置。 由此,神经元的输出可以表示为: $y_j=f(net_j)$ 其中,f()为激活函数,常用的激活函数包括Sigmoid函数、ReLU函数等,本例中采用Sigmoid函数。 以PID控制器为例,可将该控制器的输出表示为: $u(t)=K_pe(t)+K_i\int_0^te(\tau)d\tau+K_d\frac{de(t)}{dt}$ 将上式的$e(t)$替换为上述的输入形式,可得到神经网络PID控制器的输出表示式: $u(t)=K_p\cdot net_o+K_i\cdot\sum_{i=1}^t net_o+K_d\cdot\frac{dnet_o}{dt}$ 其中,$net_o$为输出神经元的加权总和。 通过神经网络的训练,可以得到网络中各层的权重和偏置。一般采用误差反向传播算法(Backpropagation,BP算法)进行训练,具体步骤为:给定输入数据,计算网络输出;计算误差,并将误差反向传递到网络中;利用误差修正神经元的权重和偏置;重复以上步骤,直至达到预期的训练效果。 为验证BP神经网络PID控制器的性能,可以使用Simulink进行仿真。在Simulink中,可用PID Controller模块搭建PID控制器模型,并使用S Function模块集成BP神经网络模型。具体步骤为:将S Function模块与PID Controller模块连接,将模型的输入和输出分别指向S Function模块的输入端口和输出端口;在S Function模块中编写BP神经网络模型的代码,并在其中调用MATLAB Neural Network Toolbox提供的函数进行训练和预测。 通过Simulink仿真,可以得到BP神经网络PID控制器的控制效果,包括控制精度、响应速度和稳定性等指标。通过调整神经网络模型的结构和训练参数,可以进一步优化控制效果。 ### 回答3: 基于s函数的bp神经网络pid控制器是一种高级的控制器,它结合了神经网络和pid控制的优点,能够在复杂的控制系统中实现更加精准的控制效果。 首先,我们需要了解什么是bp神经网络和pid控制。BP神经网络是一种前馈神经网络,它可以用来处理非线性的输入输出关系。PID控制器是一种比例、积分、微分控制的算法,用于调节系统的输出与设定值的差异。 对于基于s函数的bp神经网络pid控制器,它通过使用神经网络的非线性特性来计算控制输入,而PID控制器则对方程中的误差进行修正和控制。此外,通过使用自适应学习算法,bp神经网络pid控制器可以实现自动调节参数,从而适应系统变化和噪声干扰。 在Simulink中进行仿真实验时,我们需要首先搭建一个基于s函数的bp神经网络pid控制器模型。该模型包括输入、输出、神经网络、PID控制和反馈环节。然后,我们可以使用不同的仿真场景来测试控制器的性能。 总之,基于s函数的bp神经网络pid控制器是一种可行的高级控制器,它融合了神经网络和PID控制的优点,可以大大提高控制系统的性能和稳定性。在Simulink中进行仿真实验时,我们可以通过不同的参数设置和仿真场景来探究其性能和特点,为实际控制系统的应用提供更加精准的控制策略。
神经网络自适应PID是一种将神经网络与PID控制器相结合的控制算法。它的好处在于具有灵活性和可学习性。通过使用神经网络来自动调整PID参数,可以实现对系统的自适应控制。这种方法在实际应用中具有很大的意义,可以节省人力和资源成本,并提高控制系统的容错性和鲁棒性。通过将神经网络与PID控制器结合,可以实现参数关联自动调整和实时自适应调整,从而提高控制系统的性能和效果。目前,关于神经网络自适应PID的研究已经取得了一些进展,但在神经网络的调优方面仍需要进一步的工作。总的来说,神经网络自适应PID是一种有着重要地位和可扩展性的控制算法。\[1\]\[2\]\[3\] #### 引用[.reference_title] - *1* [基于单神经元的自适应PID算法实现步骤与MATLAB代码](https://blog.csdn.net/ling_robe/article/details/79478646)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^control_2,239^v3^insert_chatgpt"}} ] [.reference_item] - *2* [神经网络自适应PID控制及其应用](https://blog.csdn.net/qq_38853759/article/details/128604377)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^control_2,239^v3^insert_chatgpt"}} ] [.reference_item] - *3* [基于神经网络的自适应PID控制器 通过将RBF(BP)神经网络和PID控制器相结合](https://blog.csdn.net/m0_71049869/article/details/124816441)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^control_2,239^v3^insert_chatgpt"}} ] [.reference_item] [ .reference_list ]
摘要:针对传统PID控制器参数调整困难、调整时间长、调整效果不理想的问题,本文提出了一种基于BP神经网络的PID自整定控制算法。该算法将传统PID控制器中的比例、积分、微分三个参数视为输入层的神经元,将PID控制器输出的控制量作为输出层的神经元,通过对训练样本的学习,使得神经网络具有良好的自适应能力,可以根据不同的控制对象及控制要求自动调整PID参数,从而实现对控制系统的自整定。通过MATLAB仿真验证,该算法具有良好的控制性能和鲁棒性,可以应用于多种控制对象的控制系统中。 关键词:BP神经网络;PID控制器;自整定;MATLAB仿真 Abstract: In view of the difficulties in parameter adjustment, long adjustment time and unsatisfactory adjustment effect of traditional PID controller, this paper proposes a PID self-tuning control algorithm based on BP neural network. In this algorithm, the three parameters of proportion, integral and derivative in the traditional PID controller are regarded as the neurons of the input layer, and the control quantity output by the PID controller is regarded as the neurons of the output layer. By learning the training samples, the neural network has good adaptability and can automatically adjust the PID parameters according to different control objects and control requirements, so as to achieve self-tuning of the control system. Through MATLAB simulation verification, the algorithm has good control performance and robustness, and can be applied to control systems of various control objects. Keywords: BP neural network; PID controller; self-tuning; MATLAB simulation.
以下是一个基于MATLAB的BP神经网络PID控制器的原始代码: matlab % 确定BP神经网络结构 IN = 4; % 输入层节点个数 H = 5; % 隐含层节点个数 Out = 3; % 输出层节点个数 % 初始化权值 wi_init = zeros(H, IN); % 输入层到隐含层的权值 wo_init = zeros(Out, H); % 隐含层到输出层的权值 % 使用粒子群算法优化权值初始值 for t = 1:H wi_init(t, :) = x(1, (t-1)*IN+1:t*IN); end for r = 1:Out wo_init(r, :) = x(1, ((IN*H+1)+(r-1)*H):((IN*H+1)+r*H-1)); end % BP神经网络PID控制算法步骤 k = 1; % 初始化迭代次数 while k <= MaxDT % 最大迭代次数 % 采样给定和反馈信号 e(k) = r(k) - y(k); % 计算误差 % 计算神经网络输出层即为PID控制器的三个可调参数Kp、Ki和Kd % 根据上述公式,计算各层神经元的输入、输出 % 由增量式PID控制公式,计算PID控制器的控制输出u(k) % 进行神经网络学习,实时自动调整输出层和隐含层的加权系数wli(k)和wij(k),实现PID控制参数的自适应调整 k = k + 1; % 迭代次数加1 end 这段代码实现了基于MATLAB的BP神经网络PID控制器的设计。它包括了确定神经网络结构、初始化权值、采样给定和反馈信号、计算神经网络输出层、计算PID控制器的控制输出、进行神经网络学习等步骤。通过使用粒子群算法优化权值初始值,可以提高PID控制器的性能。 #### 引用[.reference_title] - *1* [【智能控制实验】基于MATLAB的BP神经网络PID控制器设计](https://blog.csdn.net/sgsx11/article/details/122397180)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^insert_down1,239^v3^insert_chatgpt"}} ] [.reference_item] - *2* *3* [基于粒子群算法优化BP神经网络的PID控制算法(Matlab代码实现)](https://blog.csdn.net/weixin_61181717/article/details/127968043)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^insert_down1,239^v3^insert_chatgpt"}} ] [.reference_item] [ .reference_list ]
MATLAB在BP (Backpropagation)神经网络和PID (Proportional-Integral-Derivative)控制的自整定方面提供了很多有用的工具和函数。 在BP神经网络中,自整定(也称为自适应学习)是指网络根据输入和输出数据的反馈进行调整,以找到最佳的权重和偏差配置。MATLAB提供了许多函数和工具箱来实现这个过程。例如,可以使用“nftool”命令打开神经网络自适应学习工具进行自整定。该工具提供了直观易用的界面,可以帮助用户选择网络拓扑、确定训练和验证数据以及设置训练参数。此外,MATLAB还提供了许多可以使用命令行进行自整定的函数,如“train”和“configure”。用户可以根据自己的需求选择适当的函数和工具进行神经网络的自整定。 在PID控制中,自整定是指根据控制系统的性能指标(如稳态误差和超调量)来调整PID控制器的增益、积分时间和微分时间。MATLAB提供了一个称为“pidtune”的函数,用户可以使用它来自动调整PID控制器的参数。此函数通过对控制系统进行频率域和时域分析,使用优化算法搜索最佳的PID参数。用户可以通过指定控制系统和性能规范来调用该函数。同时,MATLAB还提供了许多其他可以手动调整和模拟PID控制器的函数和工具。 总之,MATLAB在BP神经网络和PID控制的自整定方面提供了强大的工具和函数。无论是使用直观易用的图形界面还是使用命令行函数,用户都可以根据自己的需求和喜好来进行自整定。
### 回答1: 神经网络PID Simulink是指在Simulink软件中使用神经网络算法实现PID控制器的设计。在传统PID控制器中,控制参数是通过数学方法推导并调整得到的。而在神经网络PID控制器中,控制参数则是在神经网络中自适应得到的。 神经网络PID控制器的设计过程可以分为以下几个步骤: 1. 数据采集:通过传感器或其他方式采集必要的控制数据,如温度、压力、流量等。 2. 网络结构设计:根据控制对象的性质和控制要求,选择合适的神经网络结构,如BP神经网络、RBF神经网络等。 3. 训练网络:利用采集到的数据进行训练,训练的目标是使神经网络能够将输入信号转换为输出控制指令,从而实现对控制对象的控制。 4. 参数调整:根据控制效果对神经网络的参数进行调整,以提高控制性能和稳定性。 5. 系统仿真:使用Simulink软件对设计的神经网络PID控制器进行仿真,评估控制效果。如果效果不理想,可以重新进行参数调整和网络结构设计。 总之,神经网络PID Simulink是一种优化PID控制器性能的方法,相比传统PID控制器更加精准、自适应性更强,而使用Simulink软件进行仿真可以有效评估控制效果,找出改进的方案。 ### 回答2: 神经网络PID Simulink是指在Simulink软件中使用神经网络模型实现PID控制器的设计和仿真。PID控制器是一种经典的控制算法,通过设定目标值和实际值的误差来计算并调整控制量,达到控制系统稳定的目的。然而,传统的PID控制器往往需要手动调整参数以适应不同的工程控制任务,在实际使用中存在难以调节、响应速度慢等问题。 而神经网络可以学习和适应不同的工程控制任务,并且可以处理非线性、复杂的系统动态特性。因此,将神经网络模型应用于PID控制器设计中,可以提高控制系统的性能、响应速度和鲁棒性。 在Simulink软件中,可以通过嵌入MATLAB函数、神经网络模块等方法来实现神经网络PID控制器的建模和仿真。首先,需要确定系统的控制目标和优化指标,并利用MATLAB工具箱训练和验证PID控制器的神经网络模型。然后,将神经网络模型嵌入到Simulink中,进行控制系统的建模和仿真。 通过神经网络PID Simulink仿真,可以评估不同的神经网络结构和参数对控制系统性能的影响,进一步优化控制器的参数,实现高效、精准的工程控制。 ### 回答3: 神经网络PID Simulink是指将神经网络模型应用于PID控制器的设计中,以提高控制效果。神经网络PID控制是一种智能控制方法,它能够自适应地决定PID控制器的参数,从而不断调整控制器的输出,使系统稳定运行。Simulink则是一种基于模型的仿真工具,可以模拟各种控制系统,方便用户对复杂系统进行仿真分析。 使用神经网络PID Simulink,可以通过神经网络的学习能力,提高控制器的自适应性和稳定性,处理非线性和时变的控制系统。同时,通过Simulink可以方便地搭建模型、仿真、调试和优化控制器。因此,神经网络PID Simulink是一种非常实用的控制器设计方法,可应用于多个领域,如机械、电子、化工等。

最新推荐

毕业设计_神经网络控制算法仿真

对这样一个系统在MATLAB平台上进行仿真研究,仿真结果表明基于BP神经网络的自整定PID控制具有良好的自适应能力和自学习能力,对大迟延和变对象的系统可取得良好的控制效果。 关键词:主汽温,PID,BP神经网络,...

【NetTopologySuite】到点的距离

本工程在objectarx2020下测试通过,如要在其他版本的sdk下使用,需要修改工程的引用文件 编译方法: 1、将解压后的文件夹放到objectarx2020 文件夹 内samples\dotNet 目录下,如G:\mywork\my-object-arx\samples\dotNet 2、用vs2019或vs2022打开,编译即可 3、编译后的dll位于 G:\mywork\my-object-arx\samples\x64\Debug

【波导仿真】基于matlab矢量有限元法分析均匀波导【含Matlab源码 3564期】.zip

CSDN海神之光上传的全部代码均可运行,亲测可用,尽我所能,为你服务; 1、代码压缩包内容 主函数:main.m; 调用函数:其他m文件;无需运行 运行结果效果图; 2、代码运行版本 Matlab 2019b;若运行有误,根据提示修改;若不会,可私信博主; 3、运行操作步骤 步骤一:将所有文件放到Matlab的当前文件夹中; 步骤二:双击打开main.m文件; 步骤三:点击运行,等程序运行完得到结果; 4、物理应用 仿真:导航、地震、电磁、电路、电能、机械、工业控制、水位控制、直流电机、平面电磁波、管道瞬变流、刚度计算 光学:光栅、杨氏双缝、单缝、多缝、圆孔、矩孔衍射、夫琅禾费、干涉、拉盖尔高斯、光束、光波、涡旋 定位问题:chan、taylor、RSSI、music、卡尔曼滤波UWB 气动学:弹道、气体扩散、龙格库弹道 运动学:倒立摆、泊车 天体学:卫星轨道、姿态 船舶:控制、运动 电磁学:电场分布、电偶极子

基于javaweb的仿照百度网盘的小型云盘系统

javaweb项目完整案例

chromedriver_win32_90.0.4430.24.zip

chromedriver可执行程序下载,请注意对应操作系统和浏览器版本号,其中文件名规则为 chromedriver_操作系统_版本号,比如 chromedriver_win32_102.0.5005.27.zip表示适合windows x86 x64系统浏览器版本号为102.0.5005.27 chromedriver_linux64_103.0.5060.53.zip表示适合linux x86_64系统浏览器版本号为103.0.5060.53 chromedriver_mac64_m1_101.0.4951.15.zip表示适合macOS m1芯片系统浏览器版本号为101.0.4951.15 chromedriver_mac64_101.0.4951.15.zip表示适合macOS x86_64系统浏览器版本号为101.0.4951.15 chromedriver_mac_arm64_108.0.5359.22.zip表示适合macOS arm64系统浏览器版本号为108.0.5359.22

分布式高并发.pdf

分布式高并发

基于多峰先验分布的深度生成模型的分布外检测

基于多峰先验分布的深度生成模型的似然估计的分布外检测鸭井亮、小林圭日本庆应义塾大学鹿井亮st@keio.jp,kei@math.keio.ac.jp摘要现代机器学习系统可能会表现出不期望的和不可预测的行为,以响应分布外的输入。因此,应用分布外检测来解决这个问题是安全AI的一个活跃子领域概率密度估计是一种流行的低维数据分布外检测方法。然而,对于高维数据,最近的工作报告称,深度生成模型可以将更高的可能性分配给分布外数据,而不是训练数据。我们提出了一种新的方法来检测分布外的输入,使用具有多峰先验分布的深度生成模型。我们的实验结果表明,我们在Fashion-MNIST上训练的模型成功地将较低的可能性分配给MNIST,并成功地用作分布外检测器。1介绍机器学习领域在包括计算机视觉和自然语言处理的各个领域中然而,现代机器学习系统即使对于分

阿里云服务器下载安装jq

根据提供的引用内容,没有找到与阿里云服务器下载安装jq相关的信息。不过,如果您想在阿里云服务器上安装jq,可以按照以下步骤进行操作: 1.使用wget命令下载jq二进制文件: ```shell wget https://github.com/stedolan/jq/releases/download/jq-1.6/jq-linux64 -O jq ``` 2.将下载的jq文件移动到/usr/local/bin目录下,并添加可执行权限: ```shell sudo mv jq /usr/local/bin/ sudo chmod +x /usr/local/bin/jq ``` 3.检查j

毕业论文java vue springboot mysql 4S店车辆管理系统.docx

包括摘要,背景意义,论文结构安排,开发技术介绍,需求分析,可行性分析,功能分析,业务流程分析,数据库设计,er图,数据字典,数据流图,详细设计,系统截图,测试,总结,致谢,参考文献。

"结构化语言约束下的安全强化学习框架"

使用结构化语言约束指导安全强化学习Bharat Prakash1,Nicholas Waytowich2,Ashwinkumar Ganesan1,Tim Oates1,TinooshMohsenin11马里兰大学,巴尔的摩县(UMBC),2美国陆军研究实验室,摘要强化学习(RL)已经在解决复杂的顺序决策任务中取得了成功,当一个定义良好的奖励函数可用时。对于在现实世界中行动的代理,这些奖励函数需要非常仔细地设计,以确保代理以安全的方式行动。当这些智能体需要与人类互动并在这种环境中执行任务时,尤其如此。然而,手工制作这样的奖励函数通常需要专门的专业知识,并且很难随着任务复杂性而扩展。这导致了强化学习中长期存在的问题,即奖励稀疏性,其中稀疏或不明确的奖励函数会减慢学习过程,并导致次优策略和不安全行为。 更糟糕的是,对于RL代理必须执行的每个任务,通常需要调整或重新指定奖励函数。另一�