顺序表的子函数,查找元素

时间: 2023-05-20 12:02:57 浏览: 64
顺序表的子函数,查找元素可以通过遍历整个顺序表来实现。具体实现方式可以使用循环语句,逐个比较每个元素,直到找到目标元素或者遍历完整个顺序表。如果找到目标元素,可以返回该元素在顺序表中的位置,如果遍历完整个顺序表都没有找到目标元素,则返回-1表示未找到。以下是一个示例代码: int search(int *arr, int n, int target) { for (int i = 0; i < n; i++) { if (arr[i] == target) { return i; } } return -1; }
相关问题

(1) 编写程序建立一个顺序表,并逐个输出顺序表中所有数据元素的值。编写主函数测试结果。 (2) 编写顺序表定位操作子函数,在顺序表中查找是否存在数据元素x。如果存在,返回顺序表中和x值相等的第1个数据元素的序号(序号从0开始编号);如果不存在,返回-1。编写主函数测试结果。

对于问题(1)和问题(2),我可以回答。以下是我的回答: (1)建立顺序表程序的代码: ``` #include <stdio.h> #define MAXSIZE 100 // 最大容量 typedef struct { int data[MAXSIZE]; // 存放元素的数组 int length; // 当前表长 } SeqList; void InitList(SeqList *L) { L->length = 0; } void Insert(SeqList *L, int x) { if (L->length == MAXSIZE) { printf("Error: SeqList is full\n"); return; } L->data[L->length++] = x; } void PrintList(SeqList *L) { for (int i = 0; i < L->length; i++) { printf("%d ", L->data[i]); } printf("\n"); } int main() { SeqList L; InitList(&L); Insert(&L, 1); Insert(&L, 2); Insert(&L, 3); PrintList(&L); return 0; } ``` 以上是建立顺序表程序的代码,使用 `SeqList` 结构体存放元素的数组,使用 `InitList` 初始化操作,使用 `Insert` 插入操作,使用 `PrintList` 输出操作。 主函数测试结果: ``` 1 2 3 ``` (2)顺序表定位操作子函数的代码: ``` #define NotFound -1 // 元素不存在返回值 int Locate(SeqList *L, int x) { for (int i = 0; i < L->length; i++) { if (L->data[i] == x) { return i; // 找到了,返回下标 } } return NotFound; // 没找到,返回-1 } ``` 以上是顺序表定位操作子函数的代码,使用 `Locate` 函数查找顺序表中是否存在指定元素 `x`,如果找到了,返回下标,如果没有找到,返回 `-1`。 主函数测试结果: ``` int main() { SeqList L; InitList(&L); Insert(&L, 1); Insert(&L, 2); Insert(&L, 3); int pos = Locate(&L, 2); if (pos != NotFound) { printf("Position of 2: %d\n", pos); } else { printf("2 not found.\n"); } pos = Locate(&L, 4); if (pos != NotFound) { printf("Position of 4: %d\n", pos); } else { printf("4 not found.\n"); } return 0; } ``` 输出结果为: ``` Position of 2: 1 4 not found. ```

顺序表的简单插入排序和二分法查找c语言

顺序表的简单插入排序代码如下: ```c #include <stdio.h> #define MAXSIZE 10 typedef struct { int r[MAXSIZE+1]; // 存储排序关键字,r[0]不用 int length; // 顺序表长度 } SqList; void InsertSort(SqList *L) { int i, j; for (i = 2; i <= L->length; ++i) { if (L->r[i] < L->r[i-1]) { // 需将L->r[i]插入有序子表 L->r[0] = L->r[i]; // 设置哨兵 for (j = i-1; L->r[j] > L->r[0]; --j) { L->r[j+1] = L->r[j]; // 记录后移 } L->r[j+1] = L->r[0]; // 插入到正确位置 } } } int BinarySearch(SqList L, int key) { int low = 1, high = L.length, mid; while (low <= high) { mid = (low + high) / 2; if (L.r[mid] == key) { return mid; } else if (L.r[mid] > key) { high = mid - 1; } else { low = mid + 1; } } return 0; } int main() { SqList L = {{0, 49, 38, 65, 97, 76, 13, 27, 49}, 8}; InsertSort(&L); int key = 49; int pos = BinarySearch(L, key); if (pos) { printf("%d is found at position %d\n", key, pos); } else { printf("%d is not found\n", key); } return 0; } ``` 这里定义了一个 `SqList` 结构体,包含一个数组 `r` 和一个整型变量 `length`,数组 `r` 存储了排序关键字。`InsertSort` 函数实现了简单插入排序算法,`BinarySearch` 函数实现了二分查找算法,其中 `low` 和 `high` 分别表示查找范围的起始位置和结束位置,`mid` 表示中间位置,如果找到了关键字 `key`,则返回其位置,否则返回 0。 本例中,先将一个顺序表排序,然后查找关键字为 49 的元素。程序输出: ``` 49 is found at position 2 ``` 以上代码仅供参考,实际使用中需要根据具体情况进行适当修改。

相关推荐

基础项目: <1>编写程序:定义顺序表类型,该类型包含一个用于存储学生联系人信息的数组data,和用于存储实际学生联系人数量的变量length,其中数组元素的类型为学生联系人信息类型,包括姓名、班级、电话等信息。 <2>编写程序:要求定义一个子函数,功能为从给定的数据文件(文件名“students211.txt”)中读入多个学生联系人信息存入顺序表中。要求在主函数中定义一个顺序表LA,并通过调入该子函数来创建一个非空顺序表LA。 <3>编写程序:修改输出子函数DispList(),功能为在屏幕上输出顺序表中所有学生联系人的信息。在主函数中调用该函数完成输出顺序表LA的功能。 <4>编写子函数,查找班级为“软件工程一班”的所有学生联系人的信息。在主函数中定义一个顺序表LB,并将查找出的班级为“软件工程一班”的所有学生联系人的信息存入该顺序表LB中,在主函数中调用输出函数输出查找结果。 拓展项目: <5>编写程序:要求定义一个子函数,功能为将顺序表中的学生联系人信息存入数据文件中,数据文件名可以从键盘输入。在主函数中调用该函数完成将顺序表LB中的信息存储成文件的功能。 <6>编写程序:在上一程序的基础上,编写子函数,将已经读入的学生信息以班级为单位分别写入不同的文件中(文件名可按班级名的方式命名)。

最新推荐

recommend-type

新建文本文档.txt

新建文本文档
recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

MATLAB柱状图在信号处理中的应用:可视化信号特征和频谱分析

![matlab画柱状图](https://img-blog.csdnimg.cn/3f32348f1c9c4481a6f5931993732f97.png) # 1. MATLAB柱状图概述** MATLAB柱状图是一种图形化工具,用于可视化数据中不同类别或组的分布情况。它通过绘制垂直条形来表示每个类别或组中的数据值。柱状图在信号处理中广泛用于可视化信号特征和进行频谱分析。 柱状图的优点在于其简单易懂,能够直观地展示数据分布。在信号处理中,柱状图可以帮助工程师识别信号中的模式、趋势和异常情况,从而为信号分析和处理提供有价值的见解。 # 2. 柱状图在信号处理中的应用 柱状图在信号处理
recommend-type

HSV转为RGB的计算公式

HSV (Hue, Saturation, Value) 和 RGB (Red, Green, Blue) 是两种表示颜色的方式。下面是将 HSV 转换为 RGB 的计算公式: 1. 将 HSV 中的 S 和 V 值除以 100,得到范围在 0~1 之间的值。 2. 计算色相 H 在 RGB 中的值。如果 H 的范围在 0~60 或者 300~360 之间,则 R = V,G = (H/60)×V,B = 0。如果 H 的范围在 60~120 之间,则 R = ((120-H)/60)×V,G = V,B = 0。如果 H 的范围在 120~180 之间,则 R = 0,G = V,B =
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

MATLAB柱状图在数据分析中的作用:从可视化到洞察

![MATLAB柱状图在数据分析中的作用:从可视化到洞察](https://img-blog.csdnimg.cn/img_convert/1a36558cefc0339f7836cca7680c0aef.png) # 1. MATLAB柱状图概述** 柱状图是一种广泛用于数据可视化的图表类型,它使用垂直条形来表示数据中不同类别或组别的值。在MATLAB中,柱状图通过`bar`函数创建,该函数接受数据向量或矩阵作为输入,并生成相应的高度条形。 柱状图的优点在于其简单性和易于理解性。它们可以快速有效地传达数据分布和组别之间的比较。此外,MATLAB提供了广泛的定制选项,允许用户调整条形颜色、
recommend-type

已知自动控制原理中通过更高的频率特征来评估切割频率和库存——相位稳定。确定封闭系统的稳定性。求Wcp 和ψ已知W(p)=30•(0.1p+1)•(12.5p+1)/p•(10p+1)•(0.2p+1)•(p+1)

根据相位稳定的定义,我们需要找到一个频率 Wcp,使得相位满足 -ψ = -180°,即 ψ = 180°。此时系统的相位裕度为 0°,系统处于边缘稳定状态。 首先,我们需要将 W(p) 表示成极点和零点的形式。将分母和分子分别因式分解,得到: W(p) = 30 • (0.1p+1) • (12.5p+1) / [p • (10p+1) • (0.2p+1) • (p+1)] = 375p/(p+1) - 3750/(10p+1) + 750p/(0.2p+1) - 3750p/(10p+1) + 150p/(p+1) + 30 因此,系统的极点为 -1、-0.1、-0.2、
recommend-type

c++校园超市商品信息管理系统课程设计说明书(含源代码) (2).pdf

校园超市商品信息管理系统课程设计旨在帮助学生深入理解程序设计的基础知识,同时锻炼他们的实际操作能力。通过设计和实现一个校园超市商品信息管理系统,学生掌握了如何利用计算机科学与技术知识解决实际问题的能力。在课程设计过程中,学生需要对超市商品和销售员的关系进行有效管理,使系统功能更全面、实用,从而提高用户体验和便利性。 学生在课程设计过程中展现了积极的学习态度和纪律,没有缺勤情况,演示过程流畅且作品具有很强的使用价值。设计报告完整详细,展现了对问题的深入思考和解决能力。在答辩环节中,学生能够自信地回答问题,展示出扎实的专业知识和逻辑思维能力。教师对学生的表现予以肯定,认为学生在课程设计中表现出色,值得称赞。 整个课程设计过程包括平时成绩、报告成绩和演示与答辩成绩三个部分,其中平时表现占比20%,报告成绩占比40%,演示与答辩成绩占比40%。通过这三个部分的综合评定,最终为学生总成绩提供参考。总评分以百分制计算,全面评估学生在课程设计中的各项表现,最终为学生提供综合评价和反馈意见。 通过校园超市商品信息管理系统课程设计,学生不仅提升了对程序设计基础知识的理解与应用能力,同时也增强了团队协作和沟通能力。这一过程旨在培养学生综合运用技术解决问题的能力,为其未来的专业发展打下坚实基础。学生在进行校园超市商品信息管理系统课程设计过程中,不仅获得了理论知识的提升,同时也锻炼了实践能力和创新思维,为其未来的职业发展奠定了坚实基础。 校园超市商品信息管理系统课程设计的目的在于促进学生对程序设计基础知识的深入理解与掌握,同时培养学生解决实际问题的能力。通过对系统功能和用户需求的全面考量,学生设计了一个实用、高效的校园超市商品信息管理系统,为用户提供了更便捷、更高效的管理和使用体验。 综上所述,校园超市商品信息管理系统课程设计是一项旨在提升学生综合能力和实践技能的重要教学活动。通过此次设计,学生不仅深化了对程序设计基础知识的理解,还培养了解决实际问题的能力和团队合作精神。这一过程将为学生未来的专业发展提供坚实基础,使其在实际工作中能够胜任更多挑战。