clc,clear all,close all; dataDir = fullfile('data'); imds = imageDatastore(fullfile(dataDir,'volume'),'FileExtensions',{'.png'}); classNames = ["A", "B"]; pixelLabelID = [0, 255]; pxds = pixelLabelDatastore(fullfile(dataDir,'segmentation'),classNames,pixelLabelID,'FileExtensions',{'.png'}); % 定义网络结构 numClasses = 2; imageSize = [512, 512, 1]; lgraph = unetLayers(imageSize, numClasses, 'EncoderDepth', 3); % 定义训练选项 options = trainingOptions('adam', ... 'MaxEpochs', 100, ... 'MiniBatchSize', 16, ... 'Shuffle', 'every-epoch', ... 'ValidationData', {imageDatastore(fullfile(dataDir,'valvol'),'FileExtensions',{'.png'}), pixelLabelDatastore(fullfile(dataDir,'valseg'),classNames,pixelLabelID,'FileExtensions',{'.png'})}, ... 'ValidationFrequency', 10, ... 'Verbose', true, ... 'Plots', 'training-progress'); % 训练模型 net = trainNetwork(imds, pxds, lgraph, options);最后一行出现Invalid syntax. Use trainNetwork(ds, layers, options) to train a network with an ImageDatastore.原因
时间: 2023-07-16 12:12:19 浏览: 111
ga_main_gamain_tic函数_遗传算法源码_AllClear_
你的代码最后一行使用了不正确的函数调用方式。正确的函数调用方式应该是 `trainNetwork(ds, layers, options)`,其中 `ds` 是 `imageDatastore` 和 `pixelLabelDatastore` 的组合,而不是分别作为两个参数传递给 `trainNetwork` 函数。正确的代码如下:
```
clc,clear all,close all;
dataDir = fullfile('data');
imds = imageDatastore(fullfile(dataDir,'volume'),'FileExtensions',{'.png'});
classNames = ["A", "B"];
pixelLabelID = [0, 255];
pxds = pixelLabelDatastore(fullfile(dataDir,'segmentation'),classNames,pixelLabelID,'FileExtensions',{'.png'});
% 定义网络结构
numClasses = 2;
imageSize = [512, 512, 1];
lgraph = unetLayers(imageSize, numClasses, 'EncoderDepth', 3);
% 定义训练选项
options = trainingOptions('adam', ...
'MaxEpochs', 100, ...
'MiniBatchSize', 16, ...
'Shuffle', 'every-epoch', ...
'ValidationData', {imageDatastore(fullfile(dataDir,'valvol'),'FileExtensions',{'.png'}), pixelLabelDatastore(fullfile(dataDir,'valseg'),classNames,pixelLabelID,'FileExtensions',{'.png'})}, ...
'ValidationFrequency', 10, ...
'Verbose', true, ...
'Plots', 'training-progress');
% 训练模型
ds = combine(imds, pxds);
net = trainNetwork(ds, lgraph, options);
```
阅读全文