# training model = CNNmodel() print(model) criterion = nn.MSELoss() optimizer = torch.optim.Adam(model.parameters(), lr=0.001) epochs = 350 model.train() for epoch in range(epochs): for seq, y_train in train_set: # The gradient is zeroed and initialized before each parameter update optimizer.zero_grad() # reshape # convert to conv1d input size(batch size, channel, series length) y_pred = model(seq.reshape(1,1,-1)) loss = criterion(y_pred, y_train) loss.backward() optimizer.step() print(f'Epoch: {epoch+1:2} Loss: {loss.item():10.8f}')报错cannot unpack non-iterable numpy.float64 object
时间: 2023-12-05 14:03:10 浏览: 112
这个错误提示表明在你的代码中,某个地方使用了无法迭代的numpy.float64对象进行解包(unpack)。根据你提供的代码,我猜测可能是以下这一行代码导致了问题:
```python
for seq, y_train in train_set:
```
你可以检查一下train_set的数据类型,看看是否与你预期的一致。如果train_set是一个numpy array,你可以尝试使用numpy中的enumerate函数来遍历数据集:
```python
for i, (seq, y_train) in enumerate(train_set):
```
这样可以确保你遍历的是一个可迭代对象,每次迭代返回的是一个tuple,其中包含seq和y_train这两个元素。
相关问题
import torch.optim as optim net = Net() criterion = nn.CrossEntropyLoss() optimizer = optim.Adam(net.parameters(), lr=3e-4)
这段代码是用PyTorch库创建一个神经网络模型,并定义了交叉熵损失函数和Adam优化器。其中,net为一个自定义的神经网络模型,criterion为交叉熵损失函数,optimizer为Adam优化器,lr为学习率,设定为3e-4。Adam是一种常用的优化算法,可以用来优化神经网络的权重和偏置参数,从而提高模型的准确性。
training model = CNNmodel() print(model) criterion = nn.MSELoss() optimizer = torch.optim.Adam(model.parameters(), lr=0.001) epochs = 50 model.train() start_time = time.time() for epoch in range(epochs): for seq, y_train in train_norm: # The gradient is zeroed and initialized before each parameter update optimizer.zero_grad() # reshape # convert to conv1d input size(batch size, channel, series length) y_pred = model(seq.reshape(1,1,-1)) loss = criterion(y_pred, y_train) loss.backward() optimizer.step() print(f'Epoch: {epoch+1:2} Loss: {loss.item():10.8f}') print(f'\nDuration: {time.time() - start_time:.0f} seconds')报错ValueError: not enough values to unpack (expected 2, got 1)
这个错误通常是由于train_norm中的元素不是一个tuple,而是一个单独的tensor引起的。可以在代码中添加一些断点来检查train_norm中每个元素的形状和类型是否正确。如果发现有问题,可以更改train_norm的格式以确保每个元素都是一个tuple,第一个元素是输入序列,第二个元素是目标输出。
另外,您可能需要使用enumerate函数来遍历train_norm中的元素并获取它们的索引,如下所示:
```python
for i, (seq, y_train) in enumerate(train_norm):
# The gradient is zeroed and initialized before each parameter update
optimizer.zero_grad()
# reshape
# convert to conv1d input size(batch size, channel, series length)
y_pred = model(seq.reshape(1,1,-1))
loss = criterion(y_pred, y_train)
loss.backward()
optimizer.step()
print(f'Epoch: {epoch+1:2} Batch: {i+1:3} Loss: {loss.item():10.8f}')
```
这样做可以更好地跟踪模型的训练进度,并且如果出现错误,也可以更轻松地找到问题所在。
阅读全文