mask = cv2.threshold(mask, 0, 255, cv2.THRESH_BINARY)[1]
时间: 2024-03-02 09:51:45 浏览: 113
这是一段使用 OpenCV 的 `cv2.threshold()` 函数进行图像二值化的代码。`cv2.threshold()` 函数可以将一幅图像从灰度或彩色转为二值图像,使得图像中只有两种像素值,一种是白色(255),一种是黑色(0)。
该函数的语法如下:
```python
retval, dst = cv2.threshold(src, thresh, maxval, type)
```
其中,`src` 是输入的灰度图像;`thresh` 是阈值,可以是一个固定值或者自适应的值;`maxval` 是二值化后的最大值;`type` 是二值化的方法,例如 `cv2.THRESH_BINARY` 表示二值化;`retval` 是阈值的实际值,如果不需要可以忽略。
具体来说,这段代码的作用是将一个名为 `mask` 的图像进行二值化处理,将像素值小于等于 0 的像素点变成黑色(0),将像素值大于 0 的像素点变成白色(255)。二值化的方法为 `cv2.THRESH_BINARY`,这意味着所有大于阈值的像素点都会变成白色,小于等于阈值的像素点都会变成黑色。函数的返回值是一个元组 `(retval, dst)`,其中 `dst` 是处理后的二值图像。
相关问题
讲解这段代码的作用 for idx, thresh in enumerate(threshs): ret, mask = cv2.threshold(Conv_hsv_Gray, thresh, 255, cv2.THRESH_BINARY_INV) color = colors[idx] diff_image[mask != 255] = np.array(list(int(color[i:i + 2], 16) for i in (0, 2, 4)))
这段代码的作用是进行阈值分割,将输入的图像 `Conv_hsv_Gray` 根据一组阈值 `threshs` 进行二值化处理,并将处理后得到的二值图像的前景像素标记为颜色数组 `colors` 中对应阈值的颜色值,并将标记后的颜色值应用到输出图像 `diff_image` 的相应位置上。
具体来说,对于每一个阈值 `thresh`,代码首先使用 OpenCV 中的 `cv2.threshold` 函数将输入的图像进行二值化处理,并得到一个二值图像 `mask`。然后,代码根据当前阈值的下标 `idx` 从颜色数组 `colors` 中获取对应的颜色值,并将其存储到 `color` 变量中。接着,代码使用 numpy 数组索引的方式,将二值图像 `mask` 中非前景像素位置上的像素值设为 `diff_image` 中对应位置上的颜色值。最终,当阈值遍历完成后,`diff_image` 中存储的就是根据多个阈值进行分割后得到的彩色图像。
def cell_counter(image, min_area=20): """细胞计数""" # for s in image: df = pd.DataFrame() image =cv2.imread(image) gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY) ret, thresh = cv2.threshold(gray, 100, 255, cv2.THRESH_BINARY + cv2.THRESH_OTSU) kernel = cv2.getStructuringElement(cv2.MORPH_RECT, (3, 3)) opening = cv2.morphologyEx(thresh, cv2.MORPH_OPEN, kernel, iterations=2) distance = ndi.distance_transform_edt(opening) coords = peak_local_max(distance, min_distance=9, footprint=np.ones((7, 7)), labels=opening) mask = np.zeros(distance.shape, dtype=bool) mask[tuple(coords.T)] = True markers, _ = ndi.label(mask) labels = watershed(-distance, markers, mask=opening, watershed_line=True) labels_area = [region.area for region in regionprops(labels) if region.area > min_area] cell_num = len(labels_area) print(cell_num) df = df.append(pd.DataFrame({(file_path,cell_num)}, index=[0]), ignore_index=True) print(df) # return cell_num # df.to_excel('1.xlsx', index=False) if __name__ == '__main__': path = r'D:\0531test' slide_path = os.listdir(path) # df =pd.DataFrame(slide_path) # df.to_excel('1.xlsx',index=False) for i in slide_path: slide_name = os.path.basename(i) #slide_name 样本名称 file_path = os.path.join(path,slide_name) images = os.listdir(file_path) f = glob.glob(os.path.join(file_path, '*.jpg')) for image in f: # print(s) # for s in images: # image_name = os.path.basename(s) # name = image_name.replace('.jpg','') # df = df.append(pd.DataFrame({(file_path,name[:-8])}, index=[0]), ignore_index=True) cell_counter(image) # df.to_excel('1.xlsx',index=False)
这段代码定义了一个名为 `cell_counter` 的函数,它接受一个参数 `image` 以及一个可选参数 `min_area`,默认值为 20。该函数的作用是对传入的图像进行细胞计数,并将计数结果存储在一个 Pandas DataFrame 中。具体的实现过程如下:
1. 创建一个空的 DataFrame `df`。
2. 使用 OpenCV 中的 `cv2.imread()` 函数读取图像。
3. 将图像从 BGR 色彩空间转换为灰度色彩空间,使用 `cv2.cvtColor()` 函数实现。
4. 对灰度图像进行二值化处理,使用 `cv2.threshold()` 函数实现。
5. 对二值化图像进行形态学开运算操作,使用 `cv2.morphologyEx()` 函数实现。
6. 使用 Scikit-image 中的 `ndi.distance_transform_edt()` 函数计算距离变换图像,表示像素到离它们最近的背景像素的距离。
7. 使用 Scikit-image 中的 `peak_local_max()` 函数从距离变换图像中寻找峰值点,作为细胞的中心点。
8. 使用 Scikit-image 中的 `watershed()` 函数基于距离变换图像和峰值点进行分水岭分割,将细胞区域分割出来。
9. 对于每个细胞区域,计算其面积,并存储在 `labels_area` 列表中。
10. 统计 `labels_area` 列表中的元素个数,即为细胞数量,存储在 `cell_num` 变量中。
11. 将 `(file_path, cell_num)` 存储在一个新的 DataFrame 中,并将该 DataFrame 追加到 `df` 中。
12. 打印 `df`。
13. 如果作为脚本运行,则遍历指定路径下的所有图像文件,调用 `cell_counter()` 函数,并将结果存储在一个名为 `1.xlsx` 的 Excel 文件中。
该函数的实现比较复杂,涉及到了多个图像处理库的函数。其中,Scikit-image 是一个常用的图像处理库,提供了许多常用函数和算法,可以方便地实现许多图像处理任务。
阅读全文