利用tensorflow2.0实现gan
时间: 2023-05-31 12:20:15 浏览: 149
### 回答1:
可以使用TensorFlow 2.0来实现GAN。GAN是生成对抗网络的缩写,包含生成器和判别器两部分。生成器生成伪造的数据样本,判别器判断其真伪。两个部分互相对抗,通过反复迭代学习提高生成器生成真实样本的能力。在TensorFlow 2.0中可以使用Keras API来实现GAN。
### 回答2:
GAN是生成式对抗网络(Generative Adversarial Network)的英文缩写,是一种深度学习架构,由生成器和判别器两个模型组成。其中生成器的作用是产生类似于真实数据的数据,而判别器的作用则是将生成器产生的数据与真实数据进行比较并判断生成器产生的数据是否为真实的数据。如果生成器产生的数据被判别器判断为假的数据,则生成器需要进行调整,再次尝试产生类似于真实数据的数据,达到真实数据和生成器产生的数据在判别器中无法区分的目的。
利用TensorFlow 2.0实现GAN的步骤如下:
1. 导入相关模块
from tensorflow import keras
from tensorflow.keras import layers
import numpy as np
2. 定义生成器模型和判别器模型
生成器模型:
def make_generator_model():
model = keras.Sequential()
model.add(layers.Dense(7*7*256, use_bias=False, input_shape=(100,)))
model.add(layers.BatchNormalization())
model.add(layers.LeakyReLU())
model.add(layers.Reshape((7, 7, 256)))
assert model.output_shape == (None, 7, 7, 256)
model.add(layers.Conv2DTranspose(128, (5, 5), strides=(1, 1), padding='same', use_bias=False))
assert model.output_shape == (None, 7, 7, 128)
model.add(layers.BatchNormalization())
model.add(layers.LeakyReLU())
model.add(layers.Conv2DTranspose(64, (5, 5), strides=(2, 2), padding='same', use_bias=False))
assert model.output_shape == (None, 14, 14, 64)
model.add(layers.BatchNormalization())
model.add(layers.LeakyReLU())
model.add(layers.Conv2DTranspose(1, (5, 5), strides=(2, 2), padding='same', use_bias=False, activation='tanh'))
assert model.output_shape == (None, 28, 28, 1)
return model
判别器模型:
def make_discriminator_model():
model = keras.Sequential()
model.add(layers.Conv2D(64, (5, 5), strides=(2, 2), padding='same', input_shape=[28, 28, 1]))
model.add(layers.LeakyReLU())
model.add(layers.Dropout(0.3))
model.add(layers.Conv2D(128, (5, 5), strides=(2, 2), padding='same'))
model.add(layers.LeakyReLU())
model.add(layers.Dropout(0.3))
model.add(layers.Flatten())
model.add(layers.Dense(1))
return model
3. 训练模型
设置超参数并编译模型:
# 设置超参数
latent_dim = 100
generator = make_generator_model()
discriminator = make_discriminator_model()
# 设置优化器和损失函数
generator_optimizer = keras.optimizers.Adam(1e-4)
discriminator_optimizer = keras.optimizers.Adam(1e-4)
cross_entropy = keras.losses.BinaryCrossentropy(from_logits=True)
# 编译模型
@tf.function
def train_step(images):
noise = tf.random.normal([BATCH_SIZE, latent_dim])
with tf.GradientTape() as gen_tape, tf.GradientTape() as disc_tape:
generated_images = generator(noise, training=True)
real_output = discriminator(images, training=True)
fake_output = discriminator(generated_images, training=True)
gen_loss = generator_loss(fake_output, cross_entropy)
disc_loss = discriminator_loss(real_output, fake_output, cross_entropy)
gradients_of_generator = gen_tape.gradient(gen_loss, generator.trainable_variables)
gradients_of_discriminator = disc_tape.gradient(disc_loss, discriminator.trainable_variables)
generator_optimizer.apply_gradients(zip(gradients_of_generator, generator.trainable_variables))
discriminator_optimizer.apply_gradients(zip(gradients_of_discriminator, discriminator.trainable_variables))
# 定义损失函数并训练模型
def discriminator_loss(real_output, fake_output, loss_object):
real_loss = loss_object(tf.ones_like(real_output), real_output)
fake_loss = loss_object(tf.zeros_like(fake_output), fake_output)
total_loss = real_loss + fake_loss
return total_loss
def generator_loss(fake_output, loss_object):
return loss_object(tf.ones_like(fake_output), fake_output)
EPOCHS = 50
noise_dim = 100
num_examples_to_generate = 16
# 生成随机噪声
seed = tf.random.normal([num_examples_to_generate, noise_dim])
# 训练模型
def train(dataset, epochs):
for epoch in range(epochs):
for image_batch in dataset:
train_step(image_batch)
# 每训练一次输出一次结果图像
generate_and_save_images(generator, epoch + 1,seed)
def generate_and_save_images(model, epoch, test_input):
# 使用模型生成图像
predictions = model(test_input, training=False)
# 构造结果图像
fig = plt.figure(figsize=(4, 4))
for i in range(predictions.shape[0]):
plt.subplot(4, 4, i + 1)
plt.imshow(predictions[i, :, :, 0] * 127.5 + 127.5, cmap='gray')
plt.axis('off')
# 保存图像
plt.savefig('image_at_epoch_{:04d}.png'.format(epoch))
plt.show()
# 调用train函数进行训练模型
train(train_dataset, EPOCHS)
上述代码中,train函数接收训练数据集和训练轮数作为参数,每训练一次输出一次结果图像。generate_and_save_images函数用于生成结果图像并保存图像。
4. 验证结果
训练完成后,可以调用generate_and_save_images函数生成随训练次数增加的图像。结果图像应该类似于真实的图像,但是有些许不同之处。如果生成器产生的图像跟真实的图像在判别器中无法区分,则证明GAN模型的训练成功。
以上就是用TensorFlow 2.0实现GAN的详细步骤。GAN模型训练过程较为复杂,但是模型可以产生高质量的图像,因此具有广泛的应用前景。
### 回答3:
GAN(Generative Adversarial Networks)是一种深度学习模型,通过生成器(generator)和判别器(discriminator)两个模块博弈训练,生成器的目标是生成接近真实图像的样本,判别器则需要区分出这些样本是真实还是生成的。这个过程会不断迭代,直到生成器可以生成与真实图像无法区别的样本为止。
在TensorFlow 2.0中实现GAN可以分为以下几个步骤:
1. 定义生成器(generator)和判别器(discriminator)两个模块
2. 定义损失函数,这里使用二元交叉熵损失函数
3. 定义优化器,通常使用Adam优化器
4. 对生成器和判别器进行训练,训练过程中需要每次从真实数据集中随机采样一批数据,再生成同等数量的假样本,将它们输入到判别器中进行训练
5. 使用训练好的生成器生成图像
下面展示代码实现:
首先,导入TensorFlow和其他常用库
```python
import tensorflow as tf
import numpy as np
import matplotlib.pyplot as plt
```
定义生成器和判别器模型
```python
def make_generator_model():
model = tf.keras.Sequential()
model.add(tf.keras.layers.Dense(7*7*256, use_bias=False, input_shape=(100,)))
model.add(tf.keras.layers.BatchNormalization())
model.add(tf.keras.layers.LeakyReLU())
model.add(tf.keras.layers.Reshape((7, 7, 256)))
assert model.output_shape == (None, 7, 7, 256)
model.add(tf.keras.layers.Conv2DTranspose(128, (5, 5), strides=(1, 1), padding='same', use_bias=False))
assert model.output_shape == (None, 7, 7, 128)
model.add(tf.keras.layers.BatchNormalization())
model.add(tf.keras.layers.LeakyReLU())
model.add(tf.keras.layers.Conv2DTranspose(64, (5, 5), strides=(2, 2), padding='same', use_bias=False))
assert model.output_shape == (None, 14, 14, 64)
model.add(tf.keras.layers.BatchNormalization())
model.add(tf.keras.layers.LeakyReLU())
model.add(tf.keras.layers.Conv2DTranspose(1, (5, 5), strides=(2, 2), padding='same', use_bias=False, activation='tanh'))
assert model.output_shape == (None, 28, 28, 1)
return model
generator = make_generator_model()
def make_discriminator_model():
model = tf.keras.Sequential()
model.add(tf.keras.layers.Conv2D(64, (5, 5), strides=(2, 2), padding='same',
input_shape=[28, 28, 1]))
model.add(tf.keras.layers.LeakyReLU())
model.add(tf.keras.layers.Dropout(0.3))
model.add(tf.keras.layers.Conv2D(128, (5, 5), strides=(2, 2), padding='same'))
model.add(tf.keras.layers.LeakyReLU())
model.add(tf.keras.layers.Dropout(0.3))
model.add(tf.keras.layers.Flatten())
model.add(tf.keras.layers.Dense(1))
return model
discriminator = make_discriminator_model()
```
定义损失函数和优化器
```python
cross_entropy = tf.keras.losses.BinaryCrossentropy(from_logits=True)
def discriminator_loss(real_output, fake_output):
real_loss = cross_entropy(tf.ones_like(real_output), real_output)
fake_loss = cross_entropy(tf.zeros_like(fake_output), fake_output)
total_loss = real_loss + fake_loss
return total_loss
def generator_loss(fake_output):
return cross_entropy(tf.ones_like(fake_output), fake_output)
generator_optimizer = tf.keras.optimizers.Adam(1e-4)
discriminator_optimizer = tf.keras.optimizers.Adam(1e-4)
```
定义训练函数
```python
@tf.function
def train_step(images):
noise = tf.random.normal([BATCH_SIZE, 100])
with tf.GradientTape() as gen_tape, tf.GradientTape() as disc_tape:
generated_images = generator(noise, training=True)
real_output = discriminator(images, training=True)
fake_output = discriminator(generated_images, training=True)
gen_loss = generator_loss(fake_output)
disc_loss = discriminator_loss(real_output, fake_output)
gradients_of_generator = gen_tape.gradient(gen_loss, generator.trainable_variables)
gradients_of_discriminator = disc_tape.gradient(disc_loss, discriminator.trainable_variables)
generator_optimizer.apply_gradients(zip(gradients_of_generator, generator.trainable_variables))
discriminator_optimizer.apply_gradients(zip(gradients_of_discriminator, discriminator.trainable_variables))
```
定义生成图像函数
```python
def generate_images(model, test_input):
predictions = model(test_input, training=False)
fig = plt.figure(figsize=(4, 4))
for i in range(predictions.shape[0]):
plt.subplot(4, 4, i+1)
plt.imshow(predictions[i, :, :, 0] * 127.5 + 127.5, cmap='gray')
plt.axis('off')
plt.show()
```
开始训练
```python
EPOCHS = 100
BATCH_SIZE = 256
(train_images, train_labels), (_, _) = tf.keras.datasets.mnist.load_data()
train_images = train_images.reshape(train_images.shape[0], 28, 28, 1).astype('float32')
train_images = (train_images - 127.5) / 127.5
BUFFER_SIZE = 60000
train_dataset = tf.data.Dataset.from_tensor_slices(train_images).shuffle(BUFFER_SIZE).batch(BATCH_SIZE)
for epoch in range(EPOCHS):
for image_batch in train_dataset:
train_step(image_batch)
if epoch % 10 == 0:
generate_images(generator, tf.random.normal([16, 100]))
```
最终会得到生成器生成的数字图像。
阅读全文