matlab代码您不能再使用VLFeat提供的任何函数。函数 AlignImageUsingFeature 接受 x1 和 x2 作为输入,它们是对应集(n × 2 个矩阵)。参数 ransac_thr 和 ransac_iter 分别是 RANSAC 的错误阈值和迭代次数。输出是一个 3 × 3 仿射变换矩阵 A,可以可视化内点和变换后模板的边界以验证您的实现。蓝色:离群点;橙色:内点;红色:变换后模板的边界。
时间: 2024-03-24 10:36:54 浏览: 58
MATLAB APP design- 简单的函数表达式运算(Y=X1^3+X2^2+X3)
5星 · 资源好评率100%
好的,以下是一个可能的 MATLAB 实现:
```matlab
function A = AlignImageUsingFeature(x1, x2, ransac_thr, ransac_iter, visualize)
% 输入:
% x1, x2: 对应点集,n × 2 的矩阵
% ransac_thr: RANSAC 算法的误差阈值
% ransac_iter: RANSAC 算法的迭代次数
% visualize: 是否可视化结果
% 输出:
% A: 3 × 3 仿射变换矩阵
% 首先将点集转换为齐次坐标形式
x1 = [x1, ones(size(x1, 1), 1)];
x2 = [x2, ones(size(x2, 1), 1)];
n = size(x1, 1);
best_inliers = [];
for i = 1:ransac_iter
% 随机选择四个点
sel = randperm(n, 4);
p1 = x1(sel,:);
p2 = x2(sel,:);
% 计算仿射变换矩阵
A = p2' / p1';
% 计算所有点在变换后的位置
xt = (A * x1')';
% 计算误差向量
err = xt - x2;
dist = sqrt(sum(err.^2, 2));
% 统计内点
inliers = find(dist < ransac_thr);
if length(inliers) > length(best_inliers)
best_inliers = inliers;
end
end
% 用所有内点重新计算仿射变换矩阵
p1 = x1(best_inliers,:);
p2 = x2(best_inliers,:);
A = p2' / p1';
% 可视化结果
if visualize
figure;
% 绘制原始点集
subplot(1, 2, 1);
scatter(x1(:,1), x1(:,2), 'b');
hold on;
scatter(x2(:,1), x2(:,2), 'g');
% 绘制内点
subplot(1, 2, 2);
scatter(x1(best_inliers,1), x1(best_inliers,2), 'b');
hold on;
scatter(x2(best_inliers,1), x2(best_inliers,2), 'g');
% 绘制变换后的边界
[h, w] = size(imread('template.jpg')); % 模板图片的大小
b = [1, 1, w, w; 1, h, 1, h; 1, 1, 1, 1];
bt = (A * b)';
subplot(1, 2, 2);
line(bt([1,3],1), bt([1,3],2), 'Color', 'r', 'LineWidth', 2);
line(bt([1,2],1), bt([1,2],2), 'Color', 'r', 'LineWidth', 2);
line(bt([2,4],1), bt([2,4],2), 'Color', 'r', 'LineWidth', 2);
line(bt([3,4],1), bt([3,4],2), 'Color', 'r', 'LineWidth', 2);
end
end
```
这个函数的基本思路是使用 RANSAC 算法来筛选出内点,然后用内点重新计算仿射变换矩阵。最后,如果需要可视化结果,则在图像上绘制内点和变换后模板的边界。
阅读全文