model.zero_grad() y_pred = model(x) loss = criterion(y_pred, y) loss.backward() optimizer.step()

时间: 2024-05-24 08:15:52 浏览: 31
这段代码是一个典型的 PyTorch 中训练神经网络的代码片段,其中包含以下几个步骤: 1. `model.zero_grad()`:清空模型的梯度信息,避免上一次计算的梯度对这一次的梯度造成影响。 2. `y_pred = model(x)`:将输入数据 `x` 输入模型,得到模型的输出 `y_pred`。 3. `loss = criterion(y_pred, y)`:计算模型输出 `y_pred` 和真实标签 `y` 之间的损失值,这里使用了交叉熵损失函数,`criterion` 是一个交叉熵损失函数的实例。 4. `loss.backward()`:根据计算出的损失值,反向传播计算模型各个参数的梯度信息。 5. `optimizer.step()`:根据梯度信息和优化器的设置,更新模型的参数。 这些步骤组成了神经网络的训练过程,通过反复迭代,不断调整模型参数,使得模型能够更好地拟合训练数据,提高模型的泛化能力。
相关问题

for epoch in range(1000): y_pred = model(x_data) loss = criterion(y_pred,y_data) print(epoch, loss.item()) optimizer.zero_grad() loss.backward() optimizer.step()

这是一个简单的训练循环。在每个epoch中,模型首先通过输入数据x_data生成预测值y_pred。然后,计算损失函数loss,该函数将预测值与真实值y_data进行比较。接下来,通过调用optimizer的zero_grad()方法将优化器的梯度缓冲区清零,然后通过调用loss的backward()方法计算梯度,最后通过调用optimizer的step()方法更新模型的参数。在每个epoch结束时,打印出当前epoch和损失值loss.item()。 这段代码是一个简单的训练循环,用于训练一个模型并打印每个epoch的损失值。

for i, data in enumerate(train_loader): x_data, y_data = data # forward y_pred = model(x_data) loss = criterion(y_pred, y_data) print(epoch(), loss.data.item()) epoch_list.append(epoch) loss_list.append(loss.data()) # backward optimizer.zero_grad() loss.backward() # update optimizer.step()

在你的代码中,`epoch` 可能被定义为整数,而你试图将其当做函数来调用,从而导致了 `TypeError: 'int' object is not callable` 的错误。你可以尝试查找 `epoch()` 函数或者看一下 `epoch` 变量在哪里被定义。如果 `epoch` 是一个整数变量,那么你可以直接在 `print` 语句中使用 `epoch` 而不需要再调用它。例如: ``` print(epoch, loss.data.item()) ``` 此外,`loss.data()` 也可能会引起错误。正确的写法应该是 `loss.data`,因为 `loss.data` 是一个张量,而不是一个函数。 如果你的代码仍然出现问题,请提供更多的代码细节,我会尽力帮助你。

相关推荐

检查一下:import torch import torch.nn as nn import torch.optim as optim from torch.utils.data import DataLoader, TensorDataset from sklearn.metrics import roc_auc_score # 定义神经网络模型 class Net(nn.Module): def __init__(self): super(Net, self).__init__() self.fc1 = nn.Linear(10, 64) self.fc2 = nn.Linear(64, 32) self.fc3 = nn.Linear(32, 1) self.sigmoid = nn.Sigmoid() def forward(self, x): x = self.fc1(x) x = nn.functional.relu(x) x = self.fc2(x) x = nn.functional.relu(x) x = self.fc3(x) x = self.sigmoid(x) return x # 加载数据集 data = torch.load('data.pt') x_train, y_train, x_test, y_test = data train_dataset = TensorDataset(x_train, y_train) train_loader = DataLoader(train_dataset, batch_size=32, shuffle=True) test_dataset = TensorDataset(x_test, y_test) test_loader = DataLoader(test_dataset, batch_size=32, shuffle=False) # 定义损失函数和优化器 criterion = nn.BCELoss() optimizer = optim.Adam(net.parameters(), lr=0.01) # 训练模型 net = Net() for epoch in range(10): running_loss = 0.0 for i, data in enumerate(train_loader): inputs, labels = data optimizer.zero_grad() outputs = net(inputs) loss = criterion(outputs, labels) loss.backward() optimizer.step() running_loss += loss.item() # 在测试集上计算AUC y_pred = [] y_true = [] with torch.no_grad(): for data in test_loader: inputs, labels = data outputs = net(inputs) y_pred += outputs.tolist() y_true += labels.tolist() auc = roc_auc_score(y_true, y_pred) print('Epoch %d, loss: %.3f, test AUC: %.3f' % (epoch + 1, running_loss / len(train_loader), auc))

import numpy import numpy as np import matplotlib.pyplot as plt import math import torch from torch import nn from torch.utils.data import DataLoader, Dataset import os os.environ['KMP_DUPLICATE_LIB_OK']='True' dataset = [] for data in np.arange(0, 3, .01): data = math.sin(data * math.pi) dataset.append(data) dataset = np.array(dataset) dataset = dataset.astype('float32') max_value = np.max(dataset) min_value = np.min(dataset) scalar = max_value - min_value print(scalar) dataset = list(map(lambda x: x / scalar, dataset)) def create_dataset(dataset, look_back=3): dataX, dataY = [], [] for i in range(len(dataset) - look_back): a = dataset[i:(i + look_back)] dataX.append(a) dataY.append(dataset[i + look_back]) return np.array(dataX), np.array(dataY) data_X, data_Y = create_dataset(dataset) train_X, train_Y = data_X[:int(0.8 * len(data_X))], data_Y[:int(0.8 * len(data_Y))] test_X, test_Y = data_Y[int(0.8 * len(data_X)):], data_Y[int(0.8 * len(data_Y)):] train_X = train_X.reshape(-1, 1, 3).astype('float32') train_Y = train_Y.reshape(-1, 1, 3).astype('float32') test_X = test_X.reshape(-1, 1, 3).astype('float32') train_X = torch.from_numpy(train_X) train_Y = torch.from_numpy(train_Y) test_X = torch.from_numpy(test_X) class RNN(nn.Module): def __init__(self, input_size, hidden_size, output_size=1, num_layer=2): super(RNN, self).__init__() self.input_size = input_size self.hidden_size = hidden_size self.output_size = output_size self.num_layer = num_layer self.rnn = nn.RNN(input_size, hidden_size, batch_first=True) self.linear = nn.Linear(hidden_size, output_size) def forward(self, x): out, h = self.rnn(x) out = self.linear(out[0]) return out net = RNN(3, 20) criterion = nn.MSELoss(reduction='mean') optimizer = torch.optim.Adam(net.parameters(), lr=1e-2) train_loss = [] test_loss = [] for e in range(1000): pred = net(train_X) loss = criterion(pred, train_Y) optimizer.zero_grad() # 反向传播 loss.backward() optimizer.step() if (e + 1) % 100 == 0: print('Epoch:{},loss:{:.10f}'.format(e + 1, loss.data.item())) train_loss.append(loss.item()) plt.plot(train_loss, label='train_loss') plt.legend() plt.show()请适当修改代码,并写出预测值和真实值的代码

import numpy as np import torch import torch.nn as nn import torch.optim as optim class RNN(nn.Module): def __init__(self, input_size, hidden_size, output_size): super(RNN, self).__init__() self.hidden_size = hidden_size self.i2h = nn.Linear(input_size + hidden_size, hidden_size) self.i2o = nn.Linear(input_size + hidden_size, output_size) self.softmax = nn.LogSoftmax(dim=1) def forward(self, input, hidden): combined = torch.cat((input, hidden), 1) hidden = self.i2h(combined) output = self.i2o(combined) output = self.softmax(output) return output, hidden def begin_state(self, batch_size): return torch.zeros(batch_size, self.hidden_size) # 定义数据集 data = """he quick brown fox jumps over the lazy dog's back""" # 定义字符表 tokens = list(set(data)) tokens.sort() token2idx = {t: i for i, t in enumerate(tokens)} idx2token = {i: t for i, t in enumerate(tokens)} # 将字符表转化成独热向量 one_hot_matrix = np.eye(len(tokens)) # 定义模型参数 input_size = len(tokens) hidden_size = 128 output_size = len(tokens) learning_rate = 0.01 # 初始化模型和优化器 model = RNN(input_size, hidden_size, output_size) optimizer = optim.Adam(model.parameters(), lr=learning_rate) criterion = nn.NLLLoss() # 训练模型 for epoch in range(1000): model.train() state = model.begin_state(1) loss = 0 for ii in range(len(data) - 1): x_input = one_hot_matrix[token2idx[data[ii]]] y_target = torch.tensor([token2idx[data[ii + 1]]]) x_input = x_input.reshape(1, 1, -1) y_target = y_target.reshape(1) pred, state = model(torch.from_numpy(x_input), state) loss += criterion(pred, y_target) optimizer.zero_grad() loss.backward() optimizer.step() if epoch % 100 == 0: print(f"Epoch {epoch}, Loss: {loss.item()}")代码缩进有误,请给出正确的缩进

LDAM损失函数pytorch代码如下:class LDAMLoss(nn.Module): def init(self, cls_num_list, max_m=0.5, weight=None, s=30): super(LDAMLoss, self).init() m_list = 1.0 / np.sqrt(np.sqrt(cls_num_list)) m_list = m_list * (max_m / np.max(m_list)) m_list = torch.cuda.FloatTensor(m_list) self.m_list = m_list assert s > 0 self.s = s if weight is not None: weight = torch.FloatTensor(weight).cuda() self.weight = weight self.cls_num_list = cls_num_list def forward(self, x, target): index = torch.zeros_like(x, dtype=torch.uint8) index_float = index.type(torch.cuda.FloatTensor) batch_m = torch.matmul(self.m_list[None, :], index_float.transpose(1,0)) # 0,1 batch_m = batch_m.view((16, 1)) # size=(batch_size, 1) (-1,1) x_m = x - batch_m output = torch.where(index, x_m, x) if self.weight is not None: output = output * self.weight[None, :] target = torch.flatten(target) # 将 target 转换成 1D Tensor logit = output * self.s return F.cross_entropy(logit, target, weight=self.weight) 模型部分参数如下:# 设置全局参数 model_lr = 1e-5 BATCH_SIZE = 16 EPOCHS = 50 DEVICE = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu') use_amp = True use_dp = True classes = 7 resume = None CLIP_GRAD = 5.0 Best_ACC = 0 #记录最高得分 use_ema=True model_ema_decay=0.9998 start_epoch=1 seed=1 seed_everything(seed) # 数据增强 mixup mixup_fn = Mixup( mixup_alpha=0.8, cutmix_alpha=1.0, cutmix_minmax=None, prob=0.1, switch_prob=0.5, mode='batch', label_smoothing=0.1, num_classes=classes) 帮我用pytorch实现模型在模型训练中使用LDAM损失函数

import numpy as np import matplotlib.pyplot as plt import math import torch from torch import nn import pdb from torch.autograd import Variable import os os.environ['KMP_DUPLICATE_LIB_OK']='True' dataset = [] for data in np.arange(0, 3, .01): data = math.sin(data * math.pi) dataset.append(data) dataset = np.array(dataset) dataset = dataset.astype('float32') max_value = np.max(dataset) min_value = np.min(dataset) scalar = max_value - min_value dataset = list(map(lambda x: x / scalar, dataset)) def create_dataset(dataset, look_back=3): dataX, dataY = [], [] for i in range(len(dataset) - look_back): a = dataset[i:(i + look_back)] dataX.append(a) dataY.append(dataset[i + look_back]) return np.array(dataX), np.array(dataY) data_X, data_Y = create_dataset(dataset) # 对训练集测试集划分,划分比例0.8 train_X, train_Y = data_X[:int(0.8 * len(data_X))], data_Y[:int(0.8 * len(data_Y))] test_X, test_Y = data_Y[int(0.8 * len(data_X)):], data_Y[int(0.8 * len(data_Y)):] train_X = train_X.reshape(-1, 1, 3).astype('float32') train_Y = train_Y.reshape(-1, 1, 3).astype('float32') test_X = test_X.reshape(-1, 1, 3).astype('float32') class RNN(nn.Module): def __init__(self, input_size, hidden_size, output_size=1, num_layer=2): super(RNN, self).__init__() self.input_size = input_size self.hidden_size = hidden_size self.output_size = output_size self.num_layer = num_layer self.rnn = nn.RNN(input_size, hidden_size, batch_first=True) self.linear = nn.Linear(hidden_size, output_size) def forward(self, x): # 补充forward函数 out, h = self.rnn(x) out = self.linear(out[0]) # print("output的形状", out.shape) return out net = RNN(3, 20) criterion = nn.MSELoss(reduction='mean') optimizer = torch.optim.Adam(net.parameters(), lr=1e-2) train_loss = [] test_loss = [] for e in range(1000): pred = net(train_X) loss = criterion(pred, train_Y) optimizer.zero_grad() # 反向传播 loss.backward() optimizer.step() if (e + 1) % 100 == 0: print('Epoch:{},loss:{:.10f}'.format(e + 1, loss.data.item())) train_loss.append(loss.item()) plt.plot(train_loss, label='train_loss') plt.legend() plt.show()画出预测值真实值图

最新推荐

recommend-type

02 井道机械设备安装质量管理.doc

02 井道机械设备安装质量管理.doc
recommend-type

【流程管理】公司流程管理手册(49页).doc

【流程管理】公司流程管理手册(49页).doc
recommend-type

CV入门教程,附源代码.pdf

计算机视觉(Computer Vision, CV)是人工智能领域的一个重要分支,它研究如何使计算机从数字图像或视频中提取、分析和理解信息。本教程将带您走进计算机视觉的世界,从基础概念到实际应用,逐步深入。 二、基础概念 图像与视频:图像是静态的视觉信息,而视频是连续的图像序列。 像素:图像的基本单元,由红、绿、蓝(RGB)三种颜色分量组成。 灰度图像:只有亮度信息,没有颜色信息的图像。 特征:图像中用于描述和区分不同物体的信息,如边缘、角点、纹理等。
recommend-type

麦肯锡-TCL股份有限公司管理整合咨询-组织设计方案(146页 PPT).ppt

麦肯锡-TCL股份有限公司管理整合咨询-组织设计方案(146页 PPT).ppt
recommend-type

wx155校园二手交易平台小程序-ssm+vue+uniapp.zip(可运行源码+sql文件+文档)

校园二手交易平台小程序,主要对首页,个人中心,用户管理,卖家管理,商品分类管理,闲置物品管理,商品求购管理,系统管理等功能的研发。 本文研究以java为语言的校园二手交易平台小程序设计与实现,它在使用时数据库和程序不会被造成太大的影响,用起来也很得心应手。它也算是当时比较流行的安全性相对也很高的框架之一了,java开发语言。和mysql数据库,最终完成校园二手交易平台小程序。 管理员进入系统主要功能包括首页,个人中心,用户管理,卖家管理,商品分类管理,闲置物品管理,商品求购管理,系统管理等功能并进行操作。 卖家进入系统主要功能包括首页,个人中心,闲置物品管理,用户咨询管理,订单管理等功能并进行操作。 用户进入小程序主要功能包括首页,闲置商品,商品求购,购物车,我的等功能并进行操作。
recommend-type

GO婚礼设计创业计划:技术驱动的婚庆服务

"婚礼GO网站创业计划书" 在创建婚礼GO网站的创业计划书中,创业者首先阐述了企业的核心业务——GO婚礼设计,专注于提供计算机软件销售和技术开发、技术服务,以及与婚礼相关的各种服务,如APP制作、网页设计、弱电工程安装等。企业类型被定义为服务类,涵盖了一系列与信息技术和婚礼策划相关的业务。 创业者的个人经历显示了他对行业的理解和投入。他曾在北京某科技公司工作,积累了吃苦耐劳的精神和实践经验。此外,他在大学期间担任班长,锻炼了团队管理和领导能力。他还参加了SYB创业培训班,系统地学习了创业意识、计划制定等关键技能。 市场评估部分,目标顾客定位为本地的结婚人群,特别是中等和中上收入者。根据数据显示,广州市内有14家婚庆公司,该企业预计能占据7%的市场份额。广州每年约有1万对新人结婚,公司目标接待200对新人,显示出明确的市场切入点和增长潜力。 市场营销计划是创业成功的关键。尽管文档中没有详细列出具体的营销策略,但可以推断,企业可能通过线上线下结合的方式,利用社交媒体、网络广告和本地推广活动来吸引目标客户。此外,提供高质量的技术解决方案和服务,以区别于竞争对手,可能是其市场差异化策略的一部分。 在组织结构方面,未详细说明,但可以预期包括了技术开发团队、销售与市场部门、客户服务和支持团队,以及可能的行政和财务部门。 在财务规划上,文档提到了固定资产和折旧、流动资金需求、销售收入预测、销售和成本计划以及现金流量计划。这表明创业者已经考虑了启动和运营的初期成本,以及未来12个月的收入预测,旨在确保企业的现金流稳定,并有可能享受政府对大学生初创企业的税收优惠政策。 总结来说,婚礼GO网站的创业计划书详尽地涵盖了企业概述、创业者背景、市场分析、营销策略、组织结构和财务规划等方面,为初创企业的成功奠定了坚实的基础。这份计划书显示了创业者对市场的深刻理解,以及对技术和婚礼行业的专业认识,有望在竞争激烈的婚庆市场中找到一席之地。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【基础】PostgreSQL的安装和配置步骤

![【基础】PostgreSQL的安装和配置步骤](https://img-blog.csdnimg.cn/direct/8e80154f78dd45e4b061508286f9d090.png) # 2.1 安装前的准备工作 ### 2.1.1 系统要求 PostgreSQL 对系统硬件和软件环境有一定要求,具体如下: - 操作系统:支持 Linux、Windows、macOS 等主流操作系统。 - CPU:推荐使用多核 CPU,以提高数据库处理性能。 - 内存:根据数据库规模和并发量确定,一般建议 8GB 以上。 - 硬盘:数据库文件和临时文件需要占用一定空间,建议预留足够的空间。
recommend-type

字节跳动面试题java

字节跳动作为一家知名的互联网公司,在面试Java开发者时可能会关注以下几个方面的问题: 1. **基础技能**:Java语言的核心语法、异常处理、内存管理、集合框架、IO操作等是否熟练掌握。 2. **面向对象编程**:多态、封装、继承的理解和应用,可能会涉及设计模式的提问。 3. **并发编程**:Java并发API(synchronized、volatile、Future、ExecutorService等)的使用,以及对并发模型(线程池、并发容器等)的理解。 4. **框架知识**:Spring Boot、MyBatis、Redis等常用框架的原理和使用经验。 5. **数据库相
recommend-type

微信行业发展现状及未来发展趋势分析

微信行业发展现状及未来行业发展趋势分析 微信作为移动互联网的基础设施,已经成为流量枢纽,月活跃账户达到10.4亿,同增10.9%,是全国用户量最多的手机App。微信的活跃账户从2012年起步月活用户仅为5900万人左右,伴随中国移动互联网进程的不断推进,微信的活跃账户一直维持稳步增长,在2014-2017年年末分别达到5亿月活、6.97亿月活、8.89亿月活和9.89亿月活。 微信月活发展历程显示,微信的用户数量增长已经开始呈现乏力趋势。微信在2018年3月日活达到6.89亿人,同比增长5.5%,环比上个月增长1.7%。微信的日活同比增速下滑至20%以下,并在2017年年底下滑至7.7%左右。微信DAU/MAU的比例也一直较为稳定,从2016年以来一直维持75%-80%左右的比例,用户的粘性极强,继续提升的空间并不大。 微信作为流量枢纽,已经成为移动互联网的基础设施,月活跃账户达到10.4亿,同增10.9%,是全国用户量最多的手机App。微信的活跃账户从2012年起步月活用户仅为5900万人左右,伴随中国移动互联网进程的不断推进,微信的活跃账户一直维持稳步增长,在2014-2017年年末分别达到5亿月活、6.97亿月活、8.89亿月活和9.89亿月活。 微信的用户数量增长已经开始呈现乏力趋势,这是因为微信自身也在重新寻求新的增长点。微信日活发展历程显示,微信的用户数量增长已经开始呈现乏力趋势。微信在2018年3月日活达到6.89亿人,同比增长5.5%,环比上个月增长1.7%。微信的日活同比增速下滑至20%以下,并在2017年年底下滑至7.7%左右。 微信DAU/MAU的比例也一直较为稳定,从2016年以来一直维持75%-80%左右的比例,用户的粘性极强,继续提升的空间并不大。因此,在整体用户数量开始触达天花板的时候,微信自身也在重新寻求新的增长点。 中国的整体移动互联网人均单日使用时长已经较高水平。18Q1中国移动互联网的月度总时长达到了77千亿分钟,环比17Q4增长了14%,单人日均使用时长达到了273分钟,环比17Q4增长了15%。而根据抽样统计,社交始终占据用户时长的最大一部分。2018年3月份,社交软件占据移动互联网35%左右的时长,相比2015年减少了约10pct,但仍然是移动互联网当中最大的时长占据者。 争夺社交软件份额的主要系娱乐类App,目前占比达到约32%左右。移动端的流量时长分布远比PC端更加集中,通常认为“搜索下載”和“网站导航”为PC时代的流量枢纽,但根据统计,搜索的用户量约为4.5亿,为各类应用最高,但其时长占比约为5%左右,落后于网络视频的13%左右位于第二名。PC时代的网络社交时长占比约为4%-5%,基本与搜索相当,但其流量分发能力远弱于搜索。 微信作为移动互联网的基础设施,已经成为流量枢纽,月活跃账户达到10.4亿,同增10.9%,是全国用户量最多的手机App。微信的活跃账户从2012年起步月活用户仅为5900万人左右,伴随中国移动互联网进程的不断推进,微信的活跃账户一直维持稳步增长,在2014-2017年年末分别达到5亿月活、6.97亿月活、8.89亿月活和9.89亿月活。 微信的用户数量增长已经开始呈现乏力趋势,这是因为微信自身也在重新寻求新的增长点。微信日活发展历程显示,微信的用户数量增长已经开始呈现乏力趋势。微信在2018年3月日活达到6.89亿人,同比增长5.5%,环比上个月增长1.7%。微信的日活同比增速下滑至20%以下,并在2017年年底下滑至7.7%左右。 微信DAU/MAU的比例也一直较为稳定,从2016年以来一直维持75%-80%左右的比例,用户的粘性极强,继续提升的空间并不大。因此,在整体用户数量开始触达天花板的时候,微信自身也在重新寻求新的增长点。 微信作为移动互联网的基础设施,已经成为流量枢纽,月活跃账户达到10.4亿,同增10.9%,是全国用户量最多的手机App。微信的活跃账户从2012年起步月活用户仅为5900万人左右,伴随中国移动互联网进程的不断推进,微信的活跃账户一直维持稳步增长,在2014-2017年年末分别达到5亿月活、6.97亿月活、8.89亿月活和9.89亿月活。 微信的用户数量增长已经开始呈现乏力趋势,这是因为微信自身也在重新寻求新的增长点。微信日活发展历程显示,微信的用户数量增长已经开始呈现乏力趋势。微信在2018年3月日活达到6.89亿人,同比增长5.5%,环比上个月增长1.7%。微信的日活同比增速下滑至20%以下,并在2017年年底下滑至7.7%左右。 微信DAU/MAU的比例也一直较为稳定,从2016年以来一直维持75%-80%左右的比例,用户的粘性极强,继续提升的空间并不大。因此,在整体用户数量开始触达天花板的时候,微信自身也在重新寻求新的增长点。 微信作为移动互联网的基础设施,已经成为流量枢纽,月活跃账户达到10.4亿,同增10.9%,是全国用户量最多的手机App。微信的活跃账户从2012年起步月活用户仅为5900万人左右,伴随中国移动互联网进程的不断推进,微信的活跃账户一直维持稳步增长,在2014-2017年年末分别达到5亿月活、6.97亿月活、8.89亿月活和9.89亿月活。 微信的用户数量增长已经开始呈现乏力趋势,这是因为微信自身也在重新寻求新的增长点。微信日活发展历程显示,微信的用户数量增长已经开始呈现乏力趋势。微信在2018年3月日活达到6.89亿人,同比增长5.5%,环比上个月增长1.7%。微信的日活同比增速下滑至20%以下,并在2017年年底下滑至7.7%左右。 微信DAU/MAU的比例也一直较为稳定,从2016年以来一直维持75%-80%左右的比例,用户的粘性极强,继续提升的空间并不大。因此,在整体用户数量开始触达天花板的时候,微信自身也在重新寻求新的增长点。