double Hungarian::Solve(vector<vector<double>>& DistMatrix, vector<int>& Assignment) { Enter(DistMatrix, Assignment); Init(); doHungarian(); //update assignment for (int x = 0; x < m; x++) { Assignment.push_back(matchX[x]); } for (int x = 0; x < m; x++) { for (int y = 0; y < n; y++) { DistMatrix[x][y] = c[x][y]; if (c[x][y] == maxC) DistMatrix[x][y] = 0.f; } } float cost = 0.f; for (int x = 0; x < m; x++) { int y = matchX[x]; if (c[x][y] < maxC) { cost += c[x][y]; } } return cost; }
时间: 2023-06-16 18:06:34 浏览: 81
多目标跟踪:AI产品经理需要了解的CV通识
这段代码实现的是匈牙利算法,用于解决二分图最大权完美匹配问题。它的输入参数包括一个距离矩阵和一个空的分配数组,输出结果为最小权匹配的权值。
其中,Enter函数用于初始化距离矩阵和分配数组,Init函数用于初始化匈牙利算法中的相关数据结构,doHungarian函数用于执行匈牙利算法,得到最小权匹配。最后,更新分配数组和距离矩阵,计算最小权匹配的权值并返回。
需要注意的是,这段代码中的变量命名可能存在一些问题,如变量m和n没有明确定义,而是需要从距离矩阵中获取行数和列数。
阅读全文