double Hungarian::Solve(vector<vector<double>>& DistMatrix, vector<int>& Assignment) { Enter(DistMatrix, Assignment); Init(); doHungarian(); //update assignment for (int x = 0; x < m; x++) { Assignment.push_back(matchX[x]); } for (int x = 0; x < m; x++) { for (int y = 0; y < n; y++) { DistMatrix[x][y] = c[x][y]; if (c[x][y] == maxC) DistMatrix[x][y] = 0.f; } } float cost = 0.f; for (int x = 0; x < m; x++) { int y = matchX[x]; if (c[x][y] < maxC) { cost += c[x][y]; } } return cost; }
时间: 2023-06-16 22:06:34 浏览: 89
这段代码实现的是匈牙利算法,用于解决二分图最大权完美匹配问题。它的输入参数包括一个距离矩阵和一个空的分配数组,输出结果为最小权匹配的权值。
其中,Enter函数用于初始化距离矩阵和分配数组,Init函数用于初始化匈牙利算法中的相关数据结构,doHungarian函数用于执行匈牙利算法,得到最小权匹配。最后,更新分配数组和距离矩阵,计算最小权匹配的权值并返回。
需要注意的是,这段代码中的变量命名可能存在一些问题,如变量m和n没有明确定义,而是需要从距离矩阵中获取行数和列数。
相关问题
void Hungarian::Enter(vector<vector<double>>& DistMatrix, vector<int>& Assignment) { int i, j; m = DistMatrix.size(); n = DistMatrix[0].size(); k = m > n ? m : n;//tìm số đỉnh nhiều nhất trong 2 bên X và Y //gán tất cả các cạnh là giá trị maxC ( rất lớn) for (i = 0; i < k; i++) { for (j = 0; j < k; j++) { if (i >= m || j >= n) { c[i][j] = maxC; continue; } if (DistMatrix[i][j] == 0) c[i][j] = maxC; else c[i][j] = DistMatrix[i][j]; } } }
这段代码是匈牙利算法中的初始化部分,主要是将给定的二分图的边权矩阵转化成匈牙利算法需要的邻接矩阵格式。具体来说,它首先确定了二分图中节点数较大的那一侧的节点数k,然后将邻接矩阵的所有元素初始化为一个非常大的值maxC。接着,对于每个有边的节点对(i,j),将邻接矩阵中对应的元素赋值为这条边的边权值。如果这条边的边权值为0,那么将邻接矩阵中对应的元素也赋值为maxC,表示这条边不存在。
需要注意的是,这段代码中的c是一个二维数组,表示邻接矩阵。其中,c[i][j]表示节点i和节点j之间的边权值。m和n分别表示二分图中左侧和右侧节点的个数。maxC是一个非常大的值,用于表示不存在的边或者没有匹配的节点对之间的距离。
double Hungarian::GetC(int i, int j) { return c[i][j] - Fx[i] - Fy[j]; }
这段代码是匈牙利算法中计算两点间费用的函数。在匈牙利算法中,需要寻找二分图中的最大权匹配,其中每个点都有一个权重(或费用),而 GetC(i,j) 函数就是用来计算第 i 个点和第 j 个点之间的费用。其中,c[i][j] 表示第 i 个点和第 j 个点之间的原始费用(即没有经过任何调整的费用),而 Fx[i] 和 Fy[j] 分别表示第 i 个点和第 j 个点的横向和纵向调整值。通过对原始费用和横向、纵向调整值进行加减操作,就可以得到两点间的实际费用。
阅读全文