已知数据点坐标,可以帮我生成一段近邻传播聚类的代码吗
时间: 2023-05-25 16:07:00 浏览: 107
论文研究-基于核自适应的近邻传播聚类算法.pdf
以下是Python的近邻传播聚类算法代码示例:
```python
from sklearn.cluster import AffinityPropagation
from sklearn import metrics
from sklearn.datasets.samples_generator import make_blobs
# 生成数据
centers = [[1, 1], [-1, -1], [1, -1]]
X, labels_true = make_blobs(n_samples=300, centers=centers, cluster_std=0.5,
random_state=0)
# 执行聚类
af = AffinityPropagation(preference=-50).fit(X)
cluster_centers_indices = af.cluster_centers_indices_
labels = af.labels_
# 计算聚类质量指标
n_clusters_ = len(cluster_centers_indices)
print('Estimated number of clusters: %d' % n_clusters_)
print("Homogeneity: %0.3f" % metrics.homogeneity_score(labels_true, labels))
print("Completeness: %0.3f" % metrics.completeness_score(labels_true, labels))
print("V-measure: %0.3f" % metrics.v_measure_score(labels_true, labels))
print("Adjusted Rand Index: %0.3f"
% metrics.adjusted_rand_score(labels_true, labels))
print("Adjusted Mutual Information: %0.3f"
% metrics.adjusted_mutual_info_score(labels_true, labels))
print("Silhouette Coefficient: %0.3f"
% metrics.silhouette_score(X, labels, metric='sqeuclidean'))
```
这个示例首先使用sklearn的make_blobs()函数生成一个三类的随机数据集。然后使用AffinityPropagation()类执行近邻传播聚类,并计算了聚类质量指标,包括估计的聚类数、同质性、完整性、V-量、调整的兰德指数、调整的互信息和轮廓系数。
阅读全文