已知数据点坐标,以及数据点距离矩阵,请帮我生成一段近邻传播聚类代码
时间: 2023-05-25 07:07:08 浏览: 126
以下是一个简单的近邻传播聚类算法的 Python 代码,假设已知数据点坐标为 coords,数据点距离矩阵为 dist_matrix:
```python
import numpy as np
def affinity_matrix(dist_matrix, sigma=1):
"""计算亲和矩阵"""
return np.exp(-dist_matrix ** 2 / (2 * sigma ** 2))
def label_propagation(coords, dist_matrix, alpha=0.5, max_iter=100):
"""近邻传播聚类"""
n = len(coords)
affinity = affinity_matrix(dist_matrix)
# 初始化标签矩阵为零
labels = np.zeros(n, dtype=int)
# 迭代更新标签矩阵
for it in range(max_iter):
# 计算每个点的传播概率
norm_affinity = affinity / np.sum(affinity, axis=1, keepdims=True)
spread = np.matmul(norm_affinity, labels)
# 更新标签矩阵
labels_new = alpha * spread + (1 - alpha) * labels
# 判断是否收敛
if np.allclose(labels, labels_new):
break
labels = labels_new
return labels
```
使用示例:
```python
# 生成数据点坐标
np.random.seed(123)
coords = np.random.rand(50, 2)
# 计算距离矩阵
dist_matrix = np.sqrt(np.sum((coords[:, None, :] - coords[None, :, :]) ** 2, axis=-1))
# 进行近邻传播聚类
labels = label_propagation(coords, dist_matrix)
# 可视化聚类结果
import matplotlib.pyplot as plt
plt.scatter(coords[:, 0], coords[:, 1], c=labels)
plt.show()
```
阅读全文