d触发器同步三分频电路逻辑状态表

时间: 2024-06-22 16:00:17 浏览: 23
D触发器同步三分频电路是一种利用D触发器和同步信号来实现频率分频的逻辑电路,主要用于将输入的时钟信号分频为输出的三个等频信号。在逻辑状态表中,我们将记录各个触发器的状态变化以及它们在特定时钟周期内的行为。 首先,我们有三个D触发器,每个触发器对应一个频率的输出,通常标记为Q0、Q1和Q2(或类似编号),它们分别代表原始时钟频率的1/3、1/3和1/3。 1. D触发器状态:D触发器有两个基本状态,即"0"(置零)和"1"(置1)。输入端D接收到的值决定了触发器的状态更新。 2. 同步信号:这个电路需要一个同步脉冲,通常是系统时钟(CLK)的三倍频率,用S表示。当S=1时,触发器才会响应并改变状态。 3. 逻辑状态表通常会列出触发器的输入(D, S),当前状态(Qn), 以及下一个时钟周期后的状态(Qn+1)。例如: | D | S | Qn (当前状态) | Qn+1 (下周期状态) | |--|-------------------| | 0 | 0 | 0 | 0 | | 0 | 1 | 0 | 1 | | 1 | 0 | 1 | 0 | | 1 | 1 | 1 | 1 | 在这个表格中,"n"对应不同的触发器,比如"Q0"的第一列对应D触发器0的输出。
相关问题

d触发器三分频电路图

很抱歉,根据您提供的引用内容,没有直接回答您问题的信息。但是,我可以为您提供一些相关的信息和思路。 根据引用中的代码,可以看出D触发器的实现方式。在D触发器中,输入的数据d在时钟上升沿到来时被存储到寄存器中,然后输出q的值被更新为d的值。因此,如果我们想要实现三分频电路,可以使用三个D触发器和适当的电路连接来实现。 具体来说,我们可以将输入时钟信号连接到第一个D触发器的时钟端口,将第一个D触发器的输出连接到第二个D触发器的时钟端口,将第二个D触发器的输出连接到第三个D触发器的时钟端口。然后,我们可以将第一个D触发器的输出连接到第三个D触发器的数据端口,将第二个D触发器的输出连接到第一个D触发器的数据端口,将第三个D触发器的输出连接到第二个D触发器的数据端口。这样,当时钟信号到来时,第一个D触发器的输出会被更新为输入信号的下一个边沿,第二个D触发器的输出会被更新为第一个D触发器的输出的下一个边沿,第三个D触发器的输出会被更新为第二个D触发器的输出的下一个边沿,从而实现三分频的效果。

用d触发器实现三分频的同步和异步verilog代码及电路图

以下是基于 D 触发器的同步三分频的 Verilog 代码和电路图: Verilog 代码: ``` module sync_div3 ( input clk, input rst, output reg out ); reg [1:0] cnt; always @ (posedge clk or posedge rst) begin if (rst) begin cnt <= 2'b0; out <= 1'b0; end else begin cnt <= cnt + 1; if (cnt == 2'b11) begin cnt <= 2'b0; out <= ~out; end end end endmodule ``` 电路图: ![sync_div3](https://i.imgur.com/Eg6jvC4.png) 以下是基于 D 触发器的异步三分频的 Verilog 代码和电路图: Verilog 代码: ``` module async_div3 ( input clk, input rst_n, output reg out ); reg [1:0] cnt; reg [1:0] next_cnt; always @ (posedge clk or negedge rst_n) begin if (!rst_n) begin cnt <= 2'b0; out <= 1'b0; end else begin cnt <= next_cnt; out <= (cnt == 2'b11); end end always @ (*) begin next_cnt = cnt + 1; if (cnt == 2'b11) begin next_cnt = 2'b0; end end endmodule ``` 电路图: ![async_div3](https://i.imgur.com/8N6zR8D.png) 注意:异步三分频需要使用异步复位(即 rst_n)。如果使用同步复位(即 rst),则需要在复位信号和时钟信号之间添加一个异步复位电路,以确保正确的复位行为。

相关推荐

最新推荐

recommend-type

Quartus 2 RS、D、JK、T、触发器实验报告 D触发器构成二分频、四分频电路

两个D触发器级联实现四分频电路,原理:来一个时钟脉冲,D端数据就被送到输出端Q,同时输出一个反向数据到Q非端,下一个时钟脉冲到,重复上面过程,但数据己被取反,由此每两个时钟,Q端数被取反一次,由此得到二份频,...
recommend-type

使用D触发器制作正交编码器的鉴相电路

"使用D触发器制作正交编码器的鉴相电路" 正交编码器是伺服电机控制中常用的反馈控制方式之一,它可以提供速度和位置的反馈信息。增量式正交编码器的输出有三根线,即A相、B相和Index相。A相和B相为互差90度的方波...
recommend-type

CMOS施密特触发器电路及版图设计.doc

完成施密特触发器电路及版图设计 设计要求 (1)电路面积最优; (2)注意设计 CMOS 工艺实现; (3)版图设计采用最小尺寸设计采用工艺库 smic13mmrf_1233 (4)版图设计过程采用最小尺寸 (5)完成DRC验证
recommend-type

元器件应用中的触发器的相互转换

基本触发器之间是可以互相转换的,JK触发器和D触发器是两种最常用的触发器,别的触发器可以通过这两种触发器转化得来,它们之间也可相互转化。  JK触发器具有两个输入控制端,它转化为别的触发器十分方便。  ...
recommend-type

利用迪杰斯特拉算法的全国交通咨询系统设计与实现

全国交通咨询模拟系统是一个基于互联网的应用程序,旨在提供实时的交通咨询服务,帮助用户找到花费最少时间和金钱的交通路线。系统主要功能包括需求分析、个人工作管理、概要设计以及源程序实现。 首先,在需求分析阶段,系统明确了解用户的需求,可能是针对长途旅行、通勤或日常出行,用户可能关心的是时间效率和成本效益。这个阶段对系统的功能、性能指标以及用户界面有明确的定义。 概要设计部分详细地阐述了系统的流程。主程序流程图展示了程序的基本结构,从开始到结束的整体运行流程,包括用户输入起始和终止城市名称,系统查找路径并显示结果等步骤。创建图算法流程图则关注于核心算法——迪杰斯特拉算法的应用,该算法用于计算从一个节点到所有其他节点的最短路径,对于求解交通咨询问题至关重要。 具体到源程序,设计者实现了输入城市名称的功能,通过 LocateVex 函数查找图中的城市节点,如果城市不存在,则给出提示。咨询钱最少模块图是针对用户查询花费最少的交通方式,通过 LeastMoneyPath 和 print_Money 函数来计算并输出路径及其费用。这些函数的设计体现了算法的核心逻辑,如初始化每条路径的距离为最大值,然后通过循环更新路径直到找到最短路径。 在设计和调试分析阶段,开发者对源代码进行了严谨的测试,确保算法的正确性和性能。程序的执行过程中,会进行错误处理和异常检测,以保证用户获得准确的信息。 程序设计体会部分,可能包含了作者在开发过程中的心得,比如对迪杰斯特拉算法的理解,如何优化代码以提高运行效率,以及如何平衡用户体验与性能的关系。此外,可能还讨论了在实际应用中遇到的问题以及解决策略。 全国交通咨询模拟系统是一个结合了数据结构(如图和路径)以及优化算法(迪杰斯特拉)的实用工具,旨在通过互联网为用户提供便捷、高效的交通咨询服务。它的设计不仅体现了技术实现,也充分考虑了用户需求和实际应用场景中的复杂性。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【实战演练】基于TensorFlow的卷积神经网络图像识别项目

![【实战演练】基于TensorFlow的卷积神经网络图像识别项目](https://img-blog.csdnimg.cn/20200419235252200.png?x-oss-process=image/watermark,type_ZmFuZ3poZW5naGVpdGk,shadow_10,text_aHR0cHM6Ly9ibG9nLmNzZG4ubmV0L3FxXzM3MTQ4OTQw,size_16,color_FFFFFF,t_70) # 1. TensorFlow简介** TensorFlow是一个开源的机器学习库,用于构建和训练机器学习模型。它由谷歌开发,广泛应用于自然语言
recommend-type

CD40110工作原理

CD40110是一种双四线双向译码器,它的工作原理基于逻辑编码和译码技术。它将输入的二进制代码(一般为4位)转换成对应的输出信号,可以控制多达16个输出线中的任意一条。以下是CD40110的主要工作步骤: 1. **输入与编码**: CD40110的输入端有A3-A0四个引脚,每个引脚对应一个二进制位。当你给这些引脚提供不同的逻辑电平(高或低),就形成一个四位的输入编码。 2. **内部逻辑处理**: 内部有一个编码逻辑电路,根据输入的四位二进制代码决定哪个输出线应该导通(高电平)或保持低电平(断开)。 3. **输出**: 输出端Y7-Y0有16个,它们分别与输入的编码相对应。当特定的
recommend-type

全国交通咨询系统C++实现源码解析

"全国交通咨询系统C++代码.pdf是一个C++编程实现的交通咨询系统,主要功能是查询全国范围内的交通线路信息。该系统由JUNE于2011年6月11日编写,使用了C++标准库,包括iostream、stdio.h、windows.h和string.h等头文件。代码中定义了多个数据结构,如CityType、TrafficNode和VNode,用于存储城市、交通班次和线路信息。系统中包含城市节点、交通节点和路径节点的定义,以及相关的数据成员,如城市名称、班次、起止时间和票价。" 在这份C++代码中,核心的知识点包括: 1. **数据结构设计**: - 定义了`CityType`为short int类型,用于表示城市节点。 - `TrafficNodeDat`结构体用于存储交通班次信息,包括班次名称(`name`)、起止时间(原本注释掉了`StartTime`和`StopTime`)、运行时间(`Time`)、目的地城市编号(`EndCity`)和票价(`Cost`)。 - `VNodeDat`结构体代表城市节点,包含了城市编号(`city`)、火车班次数(`TrainNum`)、航班班次数(`FlightNum`)以及两个`TrafficNodeDat`数组,分别用于存储火车和航班信息。 - `PNodeDat`结构体则用于表示路径中的一个节点,包含城市编号(`City`)和交通班次号(`TraNo`)。 2. **数组和变量声明**: - `CityName`数组用于存储每个城市的名称,按城市编号进行索引。 - `CityNum`用于记录城市的数量。 - `AdjList`数组存储各个城市的线路信息,下标对应城市编号。 3. **算法与功能**: - 系统可能实现了Dijkstra算法或类似算法来寻找最短路径,因为有`MinTime`和`StartTime`变量,这些通常与路径规划算法有关。 - `curPath`可能用于存储当前路径的信息。 - `SeekCity`函数可能是用来查找特定城市的函数,其参数是一个城市名称。 4. **编程语言特性**: - 使用了`#define`预处理器指令来设置常量,如城市节点的最大数量(`MAX_VERTEX_NUM`)、字符串的最大长度(`MAX_STRING_NUM`)和交通班次的最大数量(`MAX_TRAFFIC_NUM`)。 - `using namespace std`导入标准命名空间,方便使用iostream库中的输入输出操作。 5. **编程实践**: - 代码的日期和作者注释显示了良好的编程习惯,这对于代码维护和团队合作非常重要。 - 结构体的设计使得数据组织有序,方便查询和操作。 这个C++代码实现了全国交通咨询系统的核心功能,涉及城市节点管理、交通班次存储和查询,以及可能的路径规划算法。通过这些数据结构和算法,用户可以查询不同城市间的交通信息,并获取最优路径建议。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依