卡方检验 python
时间: 2023-10-17 09:34:18 浏览: 104
您好!关于卡方检验(Chi-square test),您可以使用 Python 中的 SciPy 库来进行计算和分析。下面是一个示例代码,用于展示如何使用 SciPy 进行卡方检验:
```python
from scipy.stats import chi2_contingency
# 创建一个观察值的二维数组,用于表示两个变量之间的交叉表数据
observed_values = [[10, 20, 30],
[6, 9, 17]]
# 执行卡方检验
chi2, p_val, dof, expected = chi2_contingency(observed_values)
# 输出卡方统计量、p 值、自由度和期望值
print("Chi-square statistic:", chi2)
print("p-value:", p_val)
print("Degrees of freedom:", dof)
print("Expected values:")
print(expected)
```
在上面的代码中,`observed_values` 是一个观察值的二维数组,表示两个变量之间的交叉表数据。`chi2_contingency` 函数用于执行卡方检验并返回卡方统计量、p 值、自由度和期望值。最后,我们可以输出这些结果。
希望这可以帮助到您!如果您有任何其他问题,请随时提问。
相关问题
卡方检验python
你可以使用 Python 中的 scipy 库来进行卡方检验。下面是一个示例代码:
```python
from scipy.stats import chi2_contingency
# 创建一个二维的观察频数表
observed = [[10, 15, 5],
[20, 25, 10]]
# 进行卡方检验
chi2, p, dof, expected = chi2_contingency(observed)
print("卡方值:", chi2)
print("p 值:", p)
print("自由度:", dof)
print("期望频数表:", expected)
```
在上面的示例中,我们创建了一个二维的观察频数表 `observed`,然后使用 `chi2_contingency` 函数进行卡方检验。函数返回了卡方值 `chi2`,p 值 `p`,自由度 `dof` 和期望频数表 `expected`。你可以根据需要使用这些结果进行进一步的分析。
卡方检验Python
卡方检验是一种用于检验观测频数与期望频数之间差异的统计方法。在Python中,可以使用scipy.stats模块中的chisquare函数进行卡方检验。
卡方检验可以分为独立性卡方检验和一致性卡方检验。独立性卡方检验用于判断两个变量之间是否存在独立关系,而一致性卡方检验用于判断一个变量在不同条件下的分布是否一致。
对于独立性卡方检验,可以使用Python的chisquare函数进行计算。例如,给定观测频数列表list_observe和期望频数列表list_expect,可以通过调用chisquare函数来进行独立性卡方检验。
对于一致性卡方检验,也可以使用相同的chisquare函数进行计算。只需将观测频数列表和期望频数列表作为参数传递给函数即可。
在计算卡方检验时,需要注意观测频数和期望频数不能低于5,否则结果可能不可靠。通过计算卡方值和对应的p-value,可以判断是否存在显著差异。如果p-value大于0.05或者为"nan",则可以认为没有差异;反之,如果p-value小于等于0.05,则可以认为存在差异。<span class="em">1</span><span class="em">2</span><span class="em">3</span>
#### 引用[.reference_title]
- *1* *3* [卡方检验 python](https://blog.csdn.net/sinat_23971513/article/details/111192975)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_2"}}] [.reference_item style="max-width: 50%"]
- *2* [python数据分析 - 卡方检验](https://blog.csdn.net/weixin_42010722/article/details/124296654)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_2"}}] [.reference_item style="max-width: 50%"]
[ .reference_list ]
阅读全文