self.encoder = nn.ModuleList(self.encoder)中nn.ModuleList的作用
时间: 2024-06-16 12:05:04 浏览: 252
在Python中,nn.ModuleList是PyT中的一个类,它是一个容器,用于存储nn.Module子模块的列表。nn.Module是PyTorch中所有神经网络模块的基类,它提供了一些常用的方法和属性,使得我们可以方便地定义和管理神经网络模型。
在给定的代码中,self.encoder是一个列表,它包含了一些nn.Module子模块。为了将这些子模块添加到神经网络模型中并进行管理,我们使用nn.ModuleList将其封装成一个ModuleList对象。
nn.ModuleList的作用是将列表中的每个元素都注册为神经网络模型的子模块,这样就可以通过调用模型的parameters()方法来获取所有子模块的参数,并且可以通过调用模型的to()方法将所有子模块移动到指定的设备上进行计算。
此外,nn.ModuleList还提供了一些其他有用的方法,比如可以通过索引访问列表中的子模块,可以使用len()函数获取列表中子模块的数量等。
相关问题
class Net(nn.Module): def __init__(self,): super().__init__() conv_dim=64 encoder_dim = [conv_dim] + [64, 128, 256, 512 ] self.encoder = resnet34d(pretrained=False,in_chans=CFG.one_depth) self.decoder = SmpUnetDecoder( encoder_channels=[0] + encoder_dim, decoder_channels=[256, 128, 64, 32, 16], n_blocks=5, use_batchnorm=True, center=False, attention_type=None, ) self.logit = nn.Conv2d(16,1,kernel_size=1) #-- pool attention weight self.weight = nn.ModuleList([ nn.Sequential( nn.Conv2d(dim, dim, kernel_size=3, padding=1), nn.ReLU(inplace=True), ) for dim in encoder_dim ])
这是一个 PyTorch 中的神经网络模型类定义,包含了一个卷积编码器和一个 SmpUnet 解码器。其中,卷积编码器使用了 resnet34d 预训练模型,解码器的输入通道数为 [0] + encoder_dim,输出通道数为 [256, 128, 64, 32, 16],使用了 5 个块,每个块中都包含了一个卷积层和一个 ReLU 激活函数。最终输出的 logit 是一个 1x1 的卷积层,输出通道数为 1。此外,还定义了一个 ModuleList,其中包含了多个卷积层,用于计算权重。
self.src_mask = None self.pos_encoder = PositionalEncodingTwo(feature_size) self.encoder_layer = nn.TransformerEncoderLayer(d_model=feature_size, nhead=8, dropout=dropout) self.transformer_encoder = nn.TransformerEncoder(self.encoder_layer, num_layers=num_layers) self.decoder_layer = nn.TransformerDecoderLayer(d_model=feature_size, nhead=8, dropout=dropout) self.transformer_decoder = nn.TransformerDecoder(self.decoder_layer, num_layers=num_layers) self.decoder = nn.Linear(feature_size,1) self.init_weights()
这些代码是Transformer类的构造函数中的一部分,它们定义了Transformer模型的各个组件及其参数。
- `self.src_mask = None`:这是一个源端的掩码,初始值为None。在attention计算中,当某个位置的掩码为1时,表示该位置的信息不应该被考虑,因此可以在构造函数中初始化为None。
- `self.pos_encoder = PositionalEncodingTwo(feature_size)`:这是一个位置编码器,用于将输入序列中的每个位置映射到一个固定的向量表示。这里使用的是PositionalEncodingTwo类,它将位置编码的向量加到输入嵌入中,以便模型可以更好地处理序列数据。
- `self.encoder_layer = nn.TransformerEncoderLayer(d_model=feature_size, nhead=8, dropout=dropout)`:这是一个Transformer编码器层,它由多头注意力和前馈神经网络组成。这里使用的是nn.TransformerEncoderLayer类,它的d_model参数表示输入和输出的特征维度,nhead表示多头注意力的头数,dropout表示Dropout概率。
- `self.transformer_encoder = nn.TransformerEncoder(self.encoder_layer, num_layers=num_layers)`:这是一个Transformer编码器,它由多个编码器层堆叠而成。这里使用的是nn.TransformerEncoder类,它的第一个参数是编码器层,第二个参数是编码器层数。
- `self.decoder_layer = nn.TransformerDecoderLayer(d_model=feature_size, nhead=8, dropout=dropout)`:这是一个Transformer解码器层,它也由多头注意力和前馈神经网络组成。这里使用的是nn.TransformerDecoderLayer类,它的参数与编码器层相同。
- `self.transformer_decoder = nn.TransformerDecoder(self.decoder_layer, num_layers=num_layers)`:这是一个Transformer解码器,它也由多个解码器层堆叠而成。这里使用的是nn.TransformerDecoder类,它的第一个参数是解码器层,第二个参数是解码器层数。
- `self.decoder = nn.Linear(feature_size,1)`:这是一个线性层,用于将Transformer解码器的输出映射到一个标量值。这里将特征维度(feature_size)的向量映射到一个标量,以便进行回归任务。
- `self.init_weights()`:这是一个初始化权重的函数,用于初始化模型的参数。
阅读全文