nn.parameter()和nn.linear
时间: 2023-10-04 12:14:26 浏览: 883
nn.parameter()是PyTorch中用于定义模型参数的函数。它将输入的Tensor标记为模型的可学习参数,并在反向传播过程中自动更新这些参数。通常,我们使用nn.Parameter()函数将Tensor转换为可学习的参数。
而nn.Linear是PyTorch中用于定义线性变换(全连接层)的函数。在神经网络中,线性变换是常见的操作之一,它将输入Tensor与权重矩阵进行矩阵乘法,并加上偏置向量。nn.Linear函数接受输入和输出的维度作为参数,自动创建权重矩阵和偏置向量,并将其标记为可学习参数。
相关问题
torch.nn.parameter.Parameter
torch.nn.parameter.Parameter是PyTorch中的一个类,用于定义模型中的可学习参数。它是torch.Tensor的子类,具有与Tensor相同的属性和方法,但它会自动被注册为模型的参数,可以通过模型的parameters()方法进行访问。
以下是一个使用torch.nn.parameter.Parameter的示例[^1]:
```python
import torch
import torch.nn as nn
# 定义一个简单的线性模型
class LinearModel(nn.Module):
def __init__(self):
super(LinearModel, self).__init__()
self.weight = nn.Parameter(torch.randn(3, 3)) # 定义一个可学习的权重参数
self.bias = nn.Parameter(torch.zeros(3)) # 定义一个可学习的偏置参数
def forward(self, x):
return torch.matmul(x, self.weight) + self.bias
# 创建模型实例
model = LinearModel()
# 打印模型的参数
for name, param in model.named_parameters():
print(name, param.size())
# 输出:
# weight torch.Size([3, 3])
# bias torch.Size([3])
```
在上面的示例中,我们定义了一个简单的线性模型LinearModel,其中weight和bias都是nn.Parameter类型的参数。这些参数会自动被注册为模型的参数,并可以通过模型的named_parameters()方法进行访问。
self.layer1 = nn.Sequential( nn.Conv1d(1, 4, kernel_size=3, padding=1), nn.BatchNorm1d(4), nn.ReLU()) self.layer2 = nn.Sequential( nn.Conv1d(4, 8, kernel_size=3, padding=1), nn.BatchNorm1d(8), nn.ReLU()) self.layer3 = nn.Sequential( nn.Conv1d(8, 8, kernel_size=3, padding=1), nn.BatchNorm1d(8), nn.ReLU()) #nn.Dropout(p=dropout), #nn.MaxPool1d(2)) self.layer4 = nn.Sequential( nn.Conv1d(16, 32, kernel_size=3, padding=1), nn.BatchNorm1d(32), nn.ReLU(), nn.Dropout(p=dropout), nn.MaxPool1d(2)) self.conv_last = nn.Conv1d(8, 1, kernel_size=1, padding=0) self.fc = nn.Linear(10, 1) #self.gamma = torch.nn.Parameter(torch.zeros(1))
这些代码定义了一个名为`CNN`的神经网络类,这个类继承自PyTorch的`nn.Module`类。这个类包含了四个卷积层和一个全连接层。
- `layer1`是一个由三个子层组成的序列,它的输入大小为`(batch_size, 1, seq_len)`,输出大小为`(batch_size, 4, seq_len)`。
- `layer2`是一个由三个子层组成的序列,它的输入大小为`(batch_size, 4, seq_len)`,输出大小为`(batch_size, 8, seq_len)`。
- `layer3`是一个由三个子层组成的序列,它的输入大小为`(batch_size, 8, seq_len)`,输出大小为`(batch_size, 8, seq_len)`。
- `layer4`是一个由四个子层组成的序列,它的输入大小为`(batch_size, 16, seq_len)`,输出大小为`(batch_size, 32, seq_len/2)`。
这些卷积层的输出都是1维张量。其中,`nn.Conv1d`表示1维卷积层,`nn.BatchNorm1d`表示1维批量归一化层,`nn.ReLU`表示ReLU激活函数层,`nn.Dropout`表示随机失活层,`nn.MaxPool1d`表示1维最大池化层。这些层的作用分别是提取特征、标准化特征、引入非线性、随机失活以防止过拟合和下采样。
接下来,`conv_last`定义了一个1维卷积层,它的输入大小为`(batch_size, 8, seq_len/2)`,输出大小为`(batch_size, 1, seq_len/2)`。这个层用于将卷积层的输出转化为一个单一的值。
最后,`fc`定义了一个全连接层,它的输入大小为10,输出大小为1。`gamma`是一个可学习的参数,用于控制模型的输出。
阅读全文