二叉树的二叉链表存储结构的求深度非递归算法

时间: 2023-06-03 10:07:16 浏览: 66
答:可以使用栈来实现非递归算法。从根节点开始,每个节点先入栈,然后从左子树往下递归入栈,直到左子树为空。接着,出栈一个节点,判断其是否存在右子树,若存在,将右子树入栈并重复上述过程。每次出栈时记录当前深度,取最大深度即为二叉树的深度。
相关问题

二叉树的二叉链表存储结构的求深度算法

二叉树的二叉链表存储结构的求深度算法,可以采用递归的方式实现。具体代码如下: ``` int TreeDepth(BiTree T) { if (T == NULL) { return 0; } int left_depth = TreeDepth(T->lchild); int right_depth = TreeDepth(T->rchild); return left_depth > right_depth ? left_depth + 1 : right_depth + 1; } ``` 其中,BiTree是二叉树的指针类型,lchild和rchild分别表示左右孩子指针。算法的思想是:如果当前节点为空,则返回0;否则,递归求出左子树的深度和右子树的深度,然后取一个更大的数,再加1,即为当前节点的深度。

实验名称: 二叉树相关操作的实现 实验环境: Visual C++ 6.0 实验目的和要求: 1.理解二叉树二叉链表的存储结构。 2.以二叉树二叉链表的存储结构,实现二叉树的基本操作。 3.掌握二叉树二叉链表存储结构下,相关递归算法的实现。 实验内容: (一)完成二叉树二叉链表结构的定义 (二)实现二叉链表的创建,先序、中序和后序遍历算法的实现。 (三)实现二叉树求结点个数,求高度,求叶子结点数、交换二叉树左右子树的算法。

好的,我可以回答您有关于二叉树相关操作的实现的问题。 1. 二叉树二叉链表的存储结构是什么? 二叉树二叉链表的存储结构是将每个节点表示为一个结构体,包含三个指针域和一个数据域。其中,左右指针分别指向该节点的左子树和右子树,父指针指向该节点的父节点(非必需),数据域保存该节点的值。 2. 如何实现二叉链表的创建和遍历算法? 二叉链表的创建可以通过递归实现,先序遍历可以递归实现,中序和后序遍历也可以通过递归实现。代码示例如下: ``` // 二叉树结构体定义 typedef struct BiTNode { int data; struct BiTNode *lchild, *rchild; } BiTNode, *BiTree; // 创建二叉树 void CreateBiTree(BiTree *T) { int ch; scanf("%d", &ch); if (ch == -1) { *T = NULL; } else { *T = (BiTree)malloc(sizeof(BiTNode)); (*T)->data = ch; CreateBiTree(&(*T)->lchild); CreateBiTree(&(*T)->rchild); } } // 先序遍历 void PreOrderTraverse(BiTree T) { if (T == NULL) { return; } printf("%d ", T->data); PreOrderTraverse(T->lchild); PreOrderTraverse(T->rchild); } // 中序遍历 void InOrderTraverse(BiTree T) { if (T == NULL) { return; } InOrderTraverse(T->lchild); printf("%d ", T->data); InOrderTraverse(T->rchild); } // 后序遍历 void PostOrderTraverse(BiTree T) { if (T == NULL) { return; } PostOrderTraverse(T->lchild); PostOrderTraverse(T->rchild); printf("%d ", T->data); } ``` 3. 如何实现二叉树求结点个数、求高度、求叶子结点数和交换左右子树的算法? 二叉树求结点个数可以通过递归实现,每次从左右子树中递归计算节点个数,然后加上根节点即可。求高度同样可以通过递归实现,每次从左右子树中递归计算高度,然后加上1即可。求叶子结点数可以通过递归实现,每次从左右子树中递归计算叶子结点数,然后加上当前节点是否为叶子节点即可。交换左右子树可以通过递归实现,先分别递归交换左右子树,然后交换当前节点的左右子树。 代码示例如下: ``` // 求结点个数 int GetNodeCount(BiTree T) { if (T == NULL) { return 0; } return GetNodeCount(T->lchild) + GetNodeCount(T->rchild) + 1; } // 求高度 int GetHeight(BiTree T) { if (T == NULL) { return 0; } int lheight = GetHeight(T->lchild); int rheight = GetHeight(T->rchild); return (lheight > rheight ? lheight : rheight) + 1; } // 求叶子结点数 int GetLeafCount(BiTree T) { if (T == NULL) { return 0; } if (T->lchild == NULL && T->rchild == NULL) { return 1; } return GetLeafCount(T->lchild) + GetLeafCount(T->rchild); } // 交换左右子树 void Swap(BiTree T) { if (T == NULL) { return; } BiTree tmp = T->lchild; T->lchild = T->rchild; T->rchild = tmp; Swap(T->lchild); Swap(T->rchild); } ```

相关推荐

最新推荐

recommend-type

数据结构 建立二叉树二叉链表存储结构实现有关操作 实验报告

建立二叉树的二叉链表存储结构实现以下操作(选择其中的两个做) (1)输出二叉树 (2)先序遍历二叉树 (3) 中序遍历二叉树 (4)后序遍历二叉树 (5)层次遍历二叉树
recommend-type

C++使用递归和非递归算法实现的二叉树叶子节点个数计算方法

主要介绍了C++使用递归和非递归算法实现的二叉树叶子节点个数计算方法,涉及C++二叉树的定义、遍历、统计相关操作技巧,需要的朋友可以参考下
recommend-type

数据结构课程设计二叉树采用二叉链表作为存储结构

编写按层次顺序(同一层自左至右)遍历二叉树的算法。...(1)二叉树采用二叉链表作为存储结构。 (2)按题集p44面题6.69所指定的格式输出建立的二叉树。 (3)输出层次遍历结果。 (4)测试用例自己设计。
recommend-type

鸡国大冒险运行程序,点开即用

recommend-type

基于Python+Flask的安全多方计算的隐私保护系统设计与实现+全部资料齐全+部署文档.zip

【资源说明】 基于Python+Flask的安全多方计算的隐私保护系统设计与实现+全部资料齐全+部署文档.zip基于Python+Flask的安全多方计算的隐私保护系统设计与实现+全部资料齐全+部署文档.zip 【备注】 1、该项目是个人高分项目源码,已获导师指导认可通过,答辩评审分达到95分 2、该资源内项目代码都经过测试运行成功,功能ok的情况下才上传的,请放心下载使用! 3、本项目适合计算机相关专业(人工智能、通信工程、自动化、电子信息、物联网等)的在校学生、老师或者企业员工下载使用,也可作为毕业设计、课程设计、作业、项目初期立项演示等,当然也适合小白学习进阶。 4、如果基础还行,可以在此代码基础上进行修改,以实现其他功能,也可直接用于毕设、课设、作业等。 欢迎下载,沟通交流,互相学习,共同进步!
recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

实现实时数据湖架构:Kafka与Hive集成

![实现实时数据湖架构:Kafka与Hive集成](https://img-blog.csdnimg.cn/img_convert/10eb2e6972b3b6086286fc64c0b3ee41.jpeg) # 1. 实时数据湖架构概述** 实时数据湖是一种现代数据管理架构,它允许企业以低延迟的方式收集、存储和处理大量数据。与传统数据仓库不同,实时数据湖不依赖于预先定义的模式,而是采用灵活的架构,可以处理各种数据类型和格式。这种架构为企业提供了以下优势: - **实时洞察:**实时数据湖允许企业访问最新的数据,从而做出更明智的决策。 - **数据民主化:**实时数据湖使各种利益相关者都可
recommend-type

解释minorization-maximization (MM) algorithm,并给出matlab代码编写的例子

Minorization-maximization (MM) algorithm是一种常用的优化算法,用于求解非凸问题或含有约束的优化问题。该算法的基本思想是通过构造一个凸下界函数来逼近原问题,然后通过求解凸下界函数的最优解来逼近原问题的最优解。具体步骤如下: 1. 初始化参数 $\theta_0$,设 $k=0$; 2. 构造一个凸下界函数 $Q(\theta|\theta_k)$,使其满足 $Q(\theta_k|\theta_k)=f(\theta_k)$; 3. 求解 $Q(\theta|\theta_k)$ 的最优值 $\theta_{k+1}=\arg\min_\theta Q(
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。