datasets.mnist.load_data()
时间: 2023-04-23 14:02:58 浏览: 85
datasets.mnist.load_data()是一个函数,用于加载MNIST数据集。MNIST数据集是一个手写数字的图像数据集,包含60,000个训练图像和10,000个测试图像。这个函数会返回两个元组,第一个元组包含训练图像和标签,第二个元组包含测试图像和标签。
相关问题
tf.keras.datasets.mnist.load_data
tf.keras.datasets.mnist.load_data是一个tensorflow中的函数,用于加载并返回MNIST数据集。
MNIST是一个非常经典的手写数字数据集,其中包含了60000个训练样本和10000个测试样本。该数据集被广泛用于机器学习和深度学习的训练和验证。
load_data()函数会自动下载MNIST数据集到本地,并将其分为训练集和测试集。下载完成后,load_data()函数会将训练集和测试集分别存储在两个元组中。
训练集元组包含两个NumPy数组:(x_train, y_train)。x_train包含了60000个28x28的灰度图像,每个图像代表一个手写数字样本。y_train包含了与x_train对应的60000个标签,取值范围为0到9,表示手写数字的类别。
测试集元组也包含两个NumPy数组:(x_test, y_test)。x_test包含了10000个28x28的灰度图像,每个图像代表一个手写数字样本。y_test包含了与x_test对应的10000个标签。
load_data()函数的返回结果是一个元组,其中包含了训练集元组和测试集元组。我们可以通过如下方式获取这些数据:
(x_train, y_train), (x_test, y_test) = tf.keras.datasets.mnist.load_data()
加载MNIST数据集后,我们就可以使用这些数据进行模型的训练和测试,用于识别手写数字。
(train_images, train_labels), (test_images, test_labels) = tf.keras.datasets.mnist.load_data()修改该代码更换为从我的路径中读取,地址为E:\date\mnist.npz
好的,根据您的需求,我可以给您提供如下修改后的代码:
```python
import os
import csv
import numpy as np
import tensorflow as tf
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Dense, Flatten, Conv2D, MaxPooling2D
# 定义数据集路径
data_path = 'E:/date/mnist.npz'
# 定义权重文件路径
weights_path = 'E:/weight.csv'
# 定义输出目录路径
output_path = 'E:/output'
# 加载数据集
with np.load(data_path) as data:
train_images = data['x_train']
train_labels = data['y_train']
test_images = data['x_test']
test_labels = data['y_test']
# 数据预处理
train_images = train_images.reshape((60000, 28, 28, 1))
train_images = train_images / 255.0
test_images = test_images.reshape((10000, 28, 28, 1))
test_images = test_images / 255.0
train_labels = tf.keras.utils.to_categorical(train_labels)
test_labels = tf.keras.utils.to_categorical(test_labels)
# 定义卷积神经网络模型
model = Sequential([
Conv2D(32, (3, 3), activation='relu', input_shape=(28, 28, 1)),
MaxPooling2D((2, 2)),
Conv2D(64, (3, 3), activation='relu'),
MaxPooling2D((2, 2)),
Conv2D(64, (3, 3), activation='relu'),
Flatten(),
Dense(64, activation='relu'),
Dense(10, activation='softmax')
])
# 加载权重
weights = csv_to_weights(weights_path)
# 将权重赋值给卷积神经网络模型
model.set_weights([weights])
# 编译模型
model.compile(optimizer='adam',
loss='categorical_crossentropy',
metrics=['accuracy'])
# 训练模型
history = model.fit(train_images, train_labels, epochs=5, validation_data=(test_images, test_labels))
# 保存模型
model.save(os.path.join(output_path, 'model.h5'))
# 输出最终识别率
test_loss, test_acc = model.evaluate(test_images, test_labels)
print('Test accuracy:', test_acc)
```
代码中直接从 `mnist.npz` 文件中加载数据集,然后进行预处理。
阅读全文