讲解一下CNN的卷积层和池化层
时间: 2023-03-27 22:02:25 浏览: 161
卷积神经网络CNN从卷积层到池化层全过程可视化实现.exe
5星 · 资源好评率100%
CNN的卷积层是指通过卷积核对输入数据进行卷积操作,从而提取出特征信息。卷积核可以看作是一种滤波器,通过对输入数据进行卷积操作,可以提取出不同的特征信息,比如边缘、角点等。卷积层的输出结果可以看作是对输入数据的特征提取结果。
池化层是指通过对卷积层的输出结果进行降采样操作,从而减少模型的参数数量,提高模型的泛化能力。常见的池化操作有最大池化和平均池化,最大池化是指在池化区域内取最大值作为输出,平均池化是指在池化区域内取平均值作为输出。池化层的输出结果可以看作是对卷积层输出结果的降维处理。
阅读全文