椭圆抛物面的方程为x^2/a^2 +y^2/b^2 =2z,求参数方程

时间: 2023-08-03 10:06:10 浏览: 56
椭圆抛物面的方程为 $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 2z$。我们可以将其转化为参数方程的形式。 令 $x = a\cos t, y = b\sin t$,则有: $$\frac{x^2}{a^2} + \frac{y^2}{b^2} = \cos^2 t + \sin^2 t = 1$$ 代入椭圆抛物面的方程,可得: $$2z = \frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$$ 因此,$z = \frac{1}{2}$。 因此,椭圆抛物面的参数方程为: $$\begin{cases} x = a\cos t \\ y = b\sin t \\ z = \frac{1}{2} \end{cases}$$ 其中 $t$ 为参数,取值范围为 $[0, 2\pi)$。
相关问题

设平面的方程为 $ax + by + cz + d = 0$,椭圆抛物面的方程为x^2/a^2 +y^2/b^2 =2z,求平面和椭圆抛物面的交线的参数方程

将平面的方程代入椭圆抛物面的方程,得到交线的方程: $$\frac{x^2}{a^2} + \frac{y^2}{b^2} - \frac{(ax + by + d)}{2c} = 0$$ 整理后可得到: $$(b^2+2ac)x^2 + (a^2+2bc)y^2 + 2abcdxy + 2a^2czx + 2b^2czy + c^2d^2 = 0$$ 令 $A = b^2+2ac, B = a^2+2bc, C = 2abcd, D = 2a^2cz, E = 2b^2cz, F = c^2d^2$,则交线的方程可以写作: $$Ax^2 + By^2 + Cxy + Dx + Ey + F = 0$$ 由于该方程是一个二次曲线方程,我们可以通过配方法得到标准式,即: $$\left(x+\frac{Cy+2BE}{4AE-C^2}\right)^2 + \left(y+\frac{Cx+2AD}{4BE-C^2}\right)^2 = \frac{4AEF-C^2D^2}{(4AE-C^2)(4BE-C^2)}$$ 这是一个标准的椭圆方程,其中 $x_0 = -\frac{Cy+2BE}{4AE-C^2}$ 和 $y_0 = -\frac{Cx+2AD}{4BE-C^2}$ 分别为椭圆的中心坐标,$a' = \sqrt{\frac{4AEF-C^2D^2}{(4AE-C^2)(4BE-C^2)}}$ 和 $b' = \sqrt{\frac{4AEF-C^2D^2}{(4BE-C^2)(4AE-C^2)}}$ 分别为椭圆的半轴长。 因此,平面和椭圆抛物面的交线的参数方程为: $$\begin{cases} x = -\frac{Cy+2BE}{4AE-C^2} + a'\cos t \\ y = -\frac{Cx+2AD}{4BE-C^2} + b'\sin t \\ z = \frac{ax+by+d}{2c} \end{cases}$$ 其中 $t$ 为参数,取值范围为 $[0, 2\pi)$。

求下列曲面围成立体的体积 z=x^2/a^2+y^2/b^2,xy=a^2,xy=2a^2,y=b^2*x,y=2b^2*x,z=0

首先,我们可以用 xy=a^2 和 xy=2a^2 两个平面将曲面分为两部分。由于问题的对称性,我们只需要考虑其中一个部分的体积,然后将其乘以 2 即可得到整个立体的体积。 接下来,我们需要找到两个相邻的曲面 z1 和 z2,使得它们之间的体积可以用标准公式 V = ∫A(z)dz 来计算。其中 A(z) 是曲面在 z 轴高度为 z 时的投影面积。注意到这个曲面是一个旋转抛物面,因此它在任意一条垂直于 z 轴的直线上的投影都是一个椭圆。而且由于 xy=a^2 和 y=b^2*x 的限制,这些椭圆的长轴和短轴都是定值,因此我们可以直接计算出任意高度下的投影面积。 具体来说,我们可以将 xy=a^2 和 y=b^2*x 分别解出 y 和 x 的表达式,得到两个函数 y=f1(x) 和 y=f2(x)。然后我们可以用椭圆的标准公式 A(z) = πab 来计算每个高度下的投影面积,其中 a 和 b 分别是椭圆的长轴和短轴。注意到这里的 a 和 b 实际上就是 f1(z/a) 和 f2(z/a)。因此我们可以得到: A(z) = πf1(z/a)f2(z/a) 接下来,我们需要找到 z=x^2/a^2+y^2/b^2 和 z=0 这两个曲面的交线方程。注意到这两个曲面分别是一个椭圆柱面和一个平面,它们的交线是一个椭圆。我们可以将它们代入 xy=a^2 和 y=b^2*x 两个限制条件中,得到: x^2/a^2 + (a^4/x^2)/b^2 = 1 x^2/a^2 + (a^2/(2x))^2/b^2 = 1 解出 x 后,我们可以得到两个高度,分别是 z1 = x^2/a^2+(a^4/x^2)/b^2 和 z2 = x^2/a^2+(a^2/(2x))^2/b^2。注意到这里要求 x>0,因为我们只考虑了 xy=a^2 和 y=b^2*x 这两个限制条件的一个象限。 现在我们可以计算体积了: V = 2∫[0,a√2] A(z) dz = 2π∫[0,a√2] f1(z/a)f2(z/a) dz = 2π∫[a,b] f1(x)f2(x)x/√(x^2-a^2) dx 其中最后一个积分是将 z1 和 z2 的 x 表达式合并后得到的。注意到这里的积分区间是从 a 到 b,其中 b 是交线的横坐标的最大值,即 b=√(2)a。

相关推荐

详细解释以下这一大段代码: % 构建圆锥面方程 [x,y,z]=cylinder(-5:0.2:0,30); surf(x,y,z); % 构建可以根据输入参数改变位置和角度的平面方程 a = input('请输入平面的x系数:'); b = input('请输入平面的y系数:'); c = input('请输入平面的z系数:'); k = input('请输入平面的截距:'); f = @(x,y,z) a*x + b*y + c*z - k; [Xp,Yp] = meshgrid(-8:0.1:8,-8:0.1:8); Zp = (k-a*Xp-b*Yp)/c; % 求解圆锥面与平面相交曲线的函数 x_func = @(t) Xp(1,:)+t*(Xp(2,:)-Xp(1,:)); y_func = @(t) Yp(1,:)+t*(Yp(2,:)-Yp(1,:)); z_func = @(t) (k-a*x_func(t)-b*y_func(t))/c; f_func = @(t) eval(vectorize(subs(f, {'x','y','z'}, {x_func(t), y_func(t), z_func(t)}))); t_value = fzero(f_func, [0 1]); x_value = x_func(t_value); y_value = y_func(t_value); z_value = z_func(t_value); % 绘制五种平面与圆锥面相交的曲线并添加注释和图例等信息 figure subplot(2,3,1) plot3(x_value,y_value,z_value) title('交线为三角形') xlabel('x轴') ylabel('y轴') zlabel('z轴') grid on subplot(2,3,2) hold on plot3(x_value(1,:),y_value(1,:),z_value(1,:)) plot3(x_value(2,:),y_value(2,:),z_value(2,:)) title('交线为一个圆') xlabel('x轴') ylabel('y轴') zlabel('z轴') grid on subplot(2,3,3) hold on plot3(x_value(1,:),y_value(1,:),z_value(1,:)) plot3(x_value(2,:),y_value(2,:),z_value(2,:)) title('交线为一个椭圆') xlabel('x轴') ylabel('y轴') zlabel('z轴') grid on subplot(2,3,4) plot3(x_value(1,:),y_value(1,:),z_value(1,:)) title('交线为一条垂直水平面的抛物线') xlabel('x轴') ylabel('y轴') zlabel('z轴') grid on subplot(2,3,5) plot3(x_value(1,:),y_value(1,:),z_value(1,:)) title('交线为一条倾斜的抛物线') xlabel('x轴') ylabel('y轴') zlabel('z轴') grid on

最新推荐

recommend-type

matlab中的微分方程-matlab中的微分方程.doc

采用PDEPE可以解决一维时空的抛物面与椭圆方程的初值、边界值的问题。而那些对更加多的一般的偏微分方程感兴趣的可以利用PDE工具箱。 更多的matlab的综合应用技术的信息请参阅Solution8314。 更多的有关matlab...
recommend-type

HTML+CSS制作的个人博客网页.zip

如标题所述,内有详细说明
recommend-type

基于MATLAB实现的SVC PSR 光谱数据的读入,光谱平滑,光谱重采样,文件批处理;+使用说明文档.rar

CSDN IT狂飙上传的代码均可运行,功能ok的情况下才上传的,直接替换数据即可使用,小白也能轻松上手 【资源说明】 基于MATLAB实现的SVC PSR 光谱数据的读入,光谱平滑,光谱重采样,文件批处理;+使用说明文档.rar 1、代码压缩包内容 主函数:main.m; 调用函数:其他m文件;无需运行 运行结果效果图; 2、代码运行版本 Matlab 2020b;若运行有误,根据提示GPT修改;若不会,私信博主(问题描述要详细); 3、运行操作步骤 步骤一:将所有文件放到Matlab的当前文件夹中; 步骤二:双击打开main.m文件; 步骤三:点击运行,等程序运行完得到结果; 4、仿真咨询 如需其他服务,可后台私信博主; 4.1 期刊或参考文献复现 4.2 Matlab程序定制 4.3 科研合作 功率谱估计: 故障诊断分析: 雷达通信:雷达LFM、MIMO、成像、定位、干扰、检测、信号分析、脉冲压缩 滤波估计:SOC估计 目标定位:WSN定位、滤波跟踪、目标定位 生物电信号:肌电信号EMG、脑电信号EEG、心电信号ECG 通信系统:DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测识别融合、LEACH协议、信号检测、水声通信 5、欢迎下载,沟通交流,互相学习,共同进步!
recommend-type

基于MATLAB实现的有限差分法实验报告用MATLAB中的有限差分法计算槽内电位+使用说明文档

CSDN IT狂飙上传的代码均可运行,功能ok的情况下才上传的,直接替换数据即可使用,小白也能轻松上手 【资源说明】 基于MATLAB实现的有限差分法实验报告用MATLAB中的有限差分法计算槽内电位;对比解析法和数值法的异同点;选取一点,绘制收敛曲线;总的三维电位图+使用说明文档 1、代码压缩包内容 主函数:main.m; 调用函数:其他m文件;无需运行 运行结果效果图; 2、代码运行版本 Matlab 2020b;若运行有误,根据提示GPT修改;若不会,私信博主(问题描述要详细); 3、运行操作步骤 步骤一:将所有文件放到Matlab的当前文件夹中; 步骤二:双击打开main.m文件; 步骤三:点击运行,等程序运行完得到结果; 4、仿真咨询 如需其他服务,可后台私信博主; 4.1 期刊或参考文献复现 4.2 Matlab程序定制 4.3 科研合作 功率谱估计: 故障诊断分析: 雷达通信:雷达LFM、MIMO、成像、定位、干扰、检测、信号分析、脉冲压缩 滤波估计:SOC估计 目标定位:WSN定位、滤波跟踪、目标定位 生物电信号:肌电信号EMG、脑电信号EEG、心电信号ECG 通信系统:DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测识别融合、LEACH协议、信号检测、水声通信 5、欢迎下载,沟通交流,互相学习,共同进步!
recommend-type

gara.ttf,字体下载

gara.ttf字体下载
recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【实战演练】MATLAB用遗传算法改进粒子群GA-PSO算法

![MATLAB智能算法合集](https://static.fuxi.netease.com/fuxi-official/web/20221101/83f465753fd49c41536a5640367d4340.jpg) # 2.1 遗传算法的原理和实现 遗传算法(GA)是一种受生物进化过程启发的优化算法。它通过模拟自然选择和遗传机制来搜索最优解。 **2.1.1 遗传算法的编码和解码** 编码是将问题空间中的解表示为二进制字符串或其他数据结构的过程。解码是将编码的解转换为问题空间中的实际解的过程。常见的编码方法包括二进制编码、实数编码和树形编码。 **2.1.2 遗传算法的交叉和
recommend-type

openstack的20种接口有哪些

以下是OpenStack的20种API接口: 1. Identity (Keystone) API 2. Compute (Nova) API 3. Networking (Neutron) API 4. Block Storage (Cinder) API 5. Object Storage (Swift) API 6. Image (Glance) API 7. Telemetry (Ceilometer) API 8. Orchestration (Heat) API 9. Database (Trove) API 10. Bare Metal (Ironic) API 11. DNS
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。