B,G,R=cv2.split(im)
时间: 2023-05-17 08:06:44 浏览: 77
这是一个关于 OpenCV 库中图像处理的问题,B,G,R=cv2.split(im) 是将一张图像分离成三个通道的代码,其中 im 是输入的图像。该代码将图像分别分离成蓝色通道、绿色通道和红色通道,分别存储在 B、G、R 三个变量中。
相关问题
function [img_hist_trans, img_hist_sep, img_hist_hsv, img_hist_yuv, img_hist_ycbcr] = histeq_all(img_in, flag) %histogram equalization for low light image enhancement %img_in is the raw image %flag is set to 1 for displaying the outputs %output vector contains the results of five methods of histogram equalization img_test=im2double(img_in); img_hist_trans=histeq(img_test); %same as hist_trans img_hist_sep=hist_sep(img_test); img_hist_hsv=histeq_hsv(img_test); img_hist_yuv=histeq_yuv(img_test); img_hist_ycbcr=histeq_ycbcr(img_test); if flag==1 subplot(2,3,1);imshow(img_test); subplot(2,3,2);imshow(img_hist_trans); subplot(2,3,3);imshow(img_hist_sep); subplot(2,3,4);imshow(img_hist_hsv); subplot(2,3,5);imshow(img_hist_yuv); subplot(2,3,6);imshow(img_hist_ycbcr); end end
以下是将你的Matlab代码转换为C++代码的示例:
```cpp
#include <iostream>
#include <cmath>
#include <opencv2/opencv.hpp>
cv::Mat histeq(const cv::Mat& img_test) {
cv::Mat img_hist_trans;
cv::equalizeHist(img_test, img_hist_trans);
return img_hist_trans;
}
cv::Mat hist_sep(const cv::Mat& img_test) {
std::vector<cv::Mat> channels;
cv::split(img_test, channels);
cv::Mat img_hist_sep;
cv::equalizeHist(channels[0], channels[0]);
cv::equalizeHist(channels[1], channels[1]);
cv::equalizeHist(channels[2], channels[2]);
cv::merge(channels, img_hist_sep);
return img_hist_sep;
}
cv::Mat histeq_hsv(const cv::Mat& img_test) {
cv::Mat img_hsv;
cv::cvtColor(img_test, img_hsv, cv::COLOR_BGR2HSV);
std::vector<cv::Mat> channels;
cv::split(img_hsv, channels);
cv::equalizeHist(channels[2], channels[2]);
cv::merge(channels, img_hsv);
cv::Mat img_hist_hsv;
cv::cvtColor(img_hsv, img_hist_hsv, cv::COLOR_HSV2BGR);
return img_hist_hsv;
}
cv::Mat histeq_yuv(const cv::Mat& img_test) {
cv::Mat img_yuv;
cv::cvtColor(img_test, img_yuv, cv::COLOR_BGR2YUV);
std::vector<cv::Mat> channels;
cv::split(img_yuv, channels);
cv::equalizeHist(channels[0], channels[0]);
cv::merge(channels, img_yuv);
cv::Mat img_hist_yuv;
cv::cvtColor(img_yuv, img_hist_yuv, cv::COLOR_YUV2BGR);
return img_hist_yuv;
}
cv::Mat histeq_ycbcr(const cv::Mat& img_test) {
cv::Mat img_ycbcr;
cv::cvtColor(img_test, img_ycbcr, cv::COLOR_BGR2YCrCb);
std::vector<cv::Mat> channels;
cv::split(img_ycbcr, channels);
cv::equalizeHist(channels[0], channels[0]);
cv::merge(channels, img_ycbcr);
cv::Mat img_hist_ycbcr;
cv::cvtColor(img_ycbcr, img_hist_ycbcr, cv::COLOR_YCrCb2BGR);
return img_hist_ycbcr;
}
int main() {
// Example usage
cv::Mat img_in = cv::imread("input_image.jpg"); // Load input image
int flag = 1; // Set flag to 1 for displaying outputs
// Call histeq_all function
cv::Mat img_hist_trans, img_hist_sep, img_hist_hsv, img_hist_yuv, img_hist_ycbcr;
img_hist_trans = histeq(img_in);
img_hist_sep = hist_sep(img_in);
img_hist_hsv = histeq_hsv(img_in);
img_hist_yuv = histeq_yuv(img_in);
img_hist_ycbcr = histeq_ycbcr(img_in);
if (flag == 1) {
cv::imshow("Input Image", img_in);
cv::imshow("Histogram Equalization - Traditional", img_hist_trans);
cv::imshow("Histogram Equalization - Separate Channels", img_hist_sep);
cv::imshow("Histogram Equalization - HSV", img_hist_hsv);
cv::imshow("Histogram Equalization - YUV", img_hist_yuv);
cv::imshow("Histogram Equalization - YCbCr", img_hist_ycbcr);
cv::waitKey(0);
}
return 0;
}
```
请注意,在C++中,我们使用了OpenCV库来处理图像。你需要在编译环境中安装OpenCV,并将其链接到你的项目中。另外,请在主函数`main`中修改输入图像的路径和名称。
希望对你有所帮助!如果还有其他问题,请随时提问。
from sklearn import model_selection from sklearn import neural_network from sklearn import datasets from sklearn.model_selection import train_test_split import cv2 from fractions import Fraction import numpy import scipy from sklearn.neural_network import MLPClassifier from sklearn.neural_network import MLPRegressor from sklearn import preprocessing import imageio reg = MLPRegressor(solver='lbfgs', alpha=1e-5, hidden_layer_sizes=(5, 2), random_state=1) def image_to_data(image): im_resized = scipy.misc.imresize(image, (8, 8)) im_gray = cv2.cvtColor(imresized, cv2.COLOR_BGR2GRAY) im_hex = Fraction(16,255) * im_gray im_reverse = 16 - im_hex return imreverse.astype(numpy.int) def data_split(Data): x_train, x_test, y_train, y_test = train_test_split(Data.data, Data.target) return x_train, x_test, y_train, y_test def data_train(x_train, x_test, y_train, y_test): clf = neural_network.MLPClassifier() clf.fit(x_train, y_train) return clf def image_predict(image_path, clf): image = scipy.misc.imread(image_path) image_data = image_to_data(image) image_data_reshaped = image_data.reshape(1, 64) predict_result = clf.predict(image_data_reshaped) print("手写体数字识别结果为:",predict_result,'\n') if __name__=='__main__': print("若要退出,请按q退出!"'\n') str_get = input("请输入识别的手写数字序号:" +'\n') while str_get != 'q': print("识别第{}个手写数字:".format(str_get)+'\n') image_path = r"C: // Users // 33212 // Desktop // "+str_get+".png" Data = datasets.load_digits() x_train, x_test, y_train, y_test = data_split(Data) clf = data_train(x_train, x_test, y_train, y_test) image_predict(image_path, clf) str_get = input("请输入识别的手写数字序号:" +'\n')
这段代码似乎是用来进行手写数字识别的,其中使用了sklearn库中的MLPClassifier和MLPRegressor来进行分类和回归,同时使用了datasets和model_selection等模块来进行数据处理和模型选择,还有一些图像处理相关的函数。具体实现的过程就是输入一个手写数字的图片,通过对图片进行处理和预测,输出该数字的识别结果。
阅读全文