基于python实现otsu最大类间方差法确定亮度温度图像的阈值
时间: 2023-07-11 08:10:59 浏览: 154
Otsu最大类间方差法是一种常用的图像阈值分割方法,可以自动确定图像的阈值,将图像分为两个类别。在亮度温度图像中,阈值的确定可以将图像中的火点和背景分开,方便进行后续的火点监测。
下面是基于Python实现Otsu最大类间方差法确定亮度温度图像的阈值的步骤:
1. 导入相关库,读取亮度温度图像。
```python
import cv2
import numpy as np
# 读取亮度温度图像
img = cv2.imread('temperature_image.jpg', 0)
```
2. 计算图像直方图,并计算每个像素点在整个图像中的比例。
```python
# 计算图像直方图
hist = cv2.calcHist([img], [0], None, [256], [0, 256])
# 计算每个像素点在整个图像中的比例
pixels = img.shape[0] * img.shape[1]
hist_norm = hist.ravel() / pixels
```
3. 计算类间方差,并确定阈值。
```python
# 计算类间方差,并确定阈值
variances = []
for threshold in range(256):
w0 = np.sum(hist_norm[:threshold])
w1 = np.sum(hist_norm[threshold:])
if w0 == 0 or w1 == 0:
variances.append(0)
continue
mean0 = np.sum(np.arange(threshold) * hist_norm[:threshold]) / w0
mean1 = np.sum(np.arange(threshold, 256) * hist_norm[threshold:]) / w1
variances.append(w0 * w1 * (mean0 - mean1) ** 2)
threshold = np.argmax(variances)
```
4. 对图像进行二值化处理,并显示结果。
```python
# 对图像进行二值化处理,并显示结果
ret, dst = cv2.threshold(img, threshold, 255, cv2.THRESH_BINARY)
cv2.imshow('result', dst)
cv2.waitKey(0)
cv2.destroyAllWindows()
```
以上就是基于Python实现Otsu最大类间方差法确定亮度温度图像的阈值的步骤。需要注意的是,在实际应用中需要根据具体情况进行调整,比如可以通过调整图像预处理的方法和参数来改善结果。
阅读全文
相关推荐

















