我想在音视频融合声纹识别中使用amsoftmax进行分类我该怎样改 举出一个代码
时间: 2024-02-13 08:05:49 浏览: 175
在音视频融合声纹识别中使用amsoftmax进行分类,需要对原来的分类器进行修改。下面是一个使用PyTorch实现的例子:
```python
import torch
import torch.nn as nn
import torch.nn.functional as F
class AudioVisualClassifier(nn.Module):
def __init__(self, num_classes):
super(AudioVisualClassifier, self).__init__()
# 音频特征提取器
self.audio_conv = nn.Conv2d(1, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
self.audio_bn = nn.BatchNorm2d(32)
self.audio_pool = nn.MaxPool2d(kernel_size=(2, 2), stride=(2, 2))
self.audio_fc1 = nn.Linear(32 * 16 * 16, 256)
# 视频特征提取器
self.video_conv = nn.Conv3d(3, 32, kernel_size=(3, 3, 3), stride=(1, 1, 1), padding=(1, 1, 1))
self.video_bn = nn.BatchNorm3d(32)
self.video_pool = nn.MaxPool3d(kernel_size=(1, 2, 2), stride=(1, 2, 2))
self.video_fc1 = nn.Linear(32 * 16 * 16 * 8, 256)
# 分类器
self.fc2 = nn.Linear(512, num_classes)
def forward(self, audio, video):
# 音频特征提取
x = F.relu(self.audio_bn(self.audio_conv(audio)))
x = self.audio_pool(x)
x = x.view(-1, 32 * 16 * 16)
x = F.relu(self.audio_fc1(x))
# 视频特征提取
y = F.relu(self.video_bn(self.video_conv(video)))
y = self.video_pool(y)
y = y.view(-1, 32 * 16 * 16 * 8)
y = F.relu(self.video_fc1(y))
# 融合特征
z = torch.cat((x, y), dim=1)
# 分类
out = self.fc2(z)
return out
class AMSoftmax(nn.Module):
"""
AM-Softmax loss
"""
def __init__(self, in_features, out_features, s=30.0, m=0.4):
super(AMSoftmax, self).__init__()
self.in_features = in_features
self.out_features = out_features
self.s = s
self.m = m
self.weight = nn.Parameter(torch.FloatTensor(in_features, out_features))
nn.init.xavier_uniform_(self.weight)
def forward(self, x, labels):
# normalize feature
x_norm = F.normalize(x, p=2, dim=1)
w_norm = F.normalize(self.weight, p=2, dim=0)
# cos(theta)
cos_theta = torch.matmul(x_norm, w_norm)
cos_theta = cos_theta.clamp(-1, 1) # for numerical stability
# cos(theta + m)
cos_theta_m = cos_theta - self.m
# for i in range(len(labels)):
# cos_theta_m[i][labels[i]] = cos_theta[i][labels[i]] - self.m
# one-hot
one_hot = torch.zeros(cos_theta.size(), device=x.device)
one_hot.scatter_(1, labels.view(-1, 1).long(), 1)
# target logit
logits = self.s * (cos_theta_m * one_hot + cos_theta * (1 - one_hot))
return logits
# 定义模型和损失函数
model = AudioVisualClassifier(num_classes=100)
criterion = AMSoftmax(in_features=512, out_features=100)
# 训练过程中的一次前向传播和反向传播
optimizer.zero_grad()
audio, video, labels = data # 从数据集中获取一批次数据
outputs = model(audio, video)
loss = criterion(outputs, labels)
loss.backward()
optimizer.step()
```
在上面代码中,我们首先定义了一个`AMSoftmax`类,该类继承自`nn.Module`,并实现了AM-Softmax损失函数的前向传播过程。然后在`AudioVisualClassifier`模型中,将分类器的最后一层替换成了`AMSoftmax`损失函数,以实现使用AM-Softmax进行分类。在训练过程中,我们可以像常规的PyTorch模型一样使用该模型和损失函数。
阅读全文