解释代码: 2 * np.asarray([np.sum(np.log(np.diag(params.scale_inv_chole_[:,:,i]))) for i in range(self.n_components)])
时间: 2023-02-26 20:58:39 浏览: 82
这段代码是在求解某个数学模型中的对数似然函数的值。
其中:
- `np` 是 Numpy 的缩写,是 Python 中常用的科学计算库。
- `self.n_components` 表示该模型的组件数。
- `params.scale_inv_chole_[:,:,i]` 表示该模型的第 `i` 个组件的协方差矩阵的逆的 Cholesky 分解。
- `np.sum(np.log(np.diag(...)))` 表示求该矩阵对角线上所有元素的对数之和。
- `np.asarray([... for i in range(self.n_components)])` 表示将循环计算的结果转化为 Numpy 数组。
- 最终结果 `2 * np.asarray([...])` 表示对这个数组的每个元素都乘以 2,得到最终结果。
这段代码的作用是,通过计算所有组件的协方差矩阵的对数行列式的和,来估计对数似然函数的值。
相关问题
# 定义昂贵的函数 def expensive_func(t): return np.sum(t**2 - 10*np.cos(2*np.pi*t) + 10) # 定义高斯核函数 def gaussian_kernel(x, y, theta): return np.exp(-theta * cdist(x, y)**2) # 定义对数似然函数 def log_likelihood(params, x, y): theta, sigma = params k = gaussian_kernel(x, x, theta) + sigma**2 * np.eye(len(x)) try: L = np.linalg.cholesky(k) except np.linalg.LinAlgError: return -np.inf alpha = np.linalg.solve(L.T, np.linalg.solve(L, y)) return -0.5*y.T.dot(alpha) - np.sum(np.log(np.diag(L))) - 0.5*len(x)*np.log(2*np.pi) # 定义预测函数 def predict(x, y, x0, theta, sigma): k = gaussian_kernel(x, x, theta) + sigma**2 * np.eye(len(x)) k0 = gaussian_kernel(x, x0.reshape(1, -1), theta) k00 = gaussian_kernel(x0.reshape(1, -1), x0.reshape(1, -1), theta) try: L = np.linalg.cholesky(k) except np.linalg.LinAlgError: return np.nan, np.nan alpha = np.linalg.solve(L.T, np.linalg.solve(L, y)) mu = k0.T.dot(alpha) v = k00 - k0.T.dot(np.linalg.solve(L.T, np.linalg.solve(L, k0))) return mu, v # 生成随机数据 np.random.seed(666) X = np.random.uniform(-20, 20, size=(200, 10)) y = np.array([expensive_func(x) for x in X]) # 优化超参数 initial_params = [1, 1] bounds = [(1e-5, None), (1e-5, None)] res = minimize(lambda params: -log_likelihood(params, X, y), initial_params, bounds=bounds) theta, sigma = res.x # 在随机点上进行预测 x0 = np.random.uniform(-20, 20, size=(1, 10)) mu, v = predict(X, y, x0, theta, sigma) # 计算误差 exact_val = expensive_func(x0) error = (exact_val - mu)**2 print("预测误差:", error) print("预测方差:", v)注释一下
这段代码主要实现了使用高斯过程进行回归分析。其中定义了一个昂贵的函数 `expensive_func`,该函数实现了在给定输入的情况下进行昂贵计算的功能。然后定义了一个高斯核函数 `gaussian_kernel`,用于计算输入数据的协方差矩阵。接着定义了对数似然函数 `log_likelihood`,用于计算给定超参数情况下的对数似然值。最后定义了预测函数 `predict`,用于在给定超参数和输入数据的情况下进行预测。在代码中,使用了 `minimize` 函数对超参数进行优化,并使用随机数据进行了预测。最终输出预测误差和预测方差。
优化这段代码import numpy as np class SFA: # slow feature analysis class def __init__(self): self._Z = [] self._B = [] self._eigenVector = [] def getB(self, data): self._B = np.matrix(data.T.dot(data)) / (data.shape[0] - 1) def getZ(self, data): derivativeData = self.makeDiff(data) self._Z = np.matrix(derivativeData.T.dot(derivativeData)) / (derivativeData.shape[0] - 1) def makeDiff(self, data): diffData = np.mat(np.zeros((data.shape[0], data.shape[1]))) for i in range(data.shape[1] - 1): diffData[:, i] = data[:, i] - data[:, i + 1] diffData[:, -1] = data[:, -1] - data[:, 0] return np.mat(diffData) def fit_transform(self, data, threshold=1e-7, conponents=-1): if conponents == -1: conponents = data.shape[0] self.getB(data) U, s, V = np.linalg.svd(self._B) count = len(s) for i in range(len(s)): if s[i] ** (0.5) < threshold: count = i break s = s[0:count] s = s ** 0.5 S = (np.mat(np.diag(s))).I U = U[:, 0:count] whiten = S * U.T Z = (whiten * data.T).T self.getZ(Z) PT, O, P = np.linalg.svd(self._Z) self._eigenVector = P * whiten self._eigenVector = self._eigenVector[-1 * conponents:, :] return data.dot(self._eigenVector.T) def transfer(self, data): return data.dot(self._eigenVector.T)
这段代码可以进一步优化,具体如下:
1. 使用numpy的matmul函数代替dot函数,matmul函数可以更高效地进行矩阵乘法运算。
2. 将常数值的计算提前,避免在循环中重复计算,提高效率。
3. 使用numpy的einsum函数代替循环,einsum函数可以更高效地进行矩阵计算。
4. 使用Python中的列表推导式代替for循环,可以提高代码的简洁性和效率。
优化后的代码如下:
```python
import numpy as np
class SFA:
def __init__(self):
self._Z = []
self._B = []
self._eigenVector = []
def getB(self, data):
self._B = np.matmul(data.T, data) / (data.shape[0] - 1)
def getZ(self, data):
derivativeData = self.makeDiff(data)
self._Z = np.matmul(derivativeData.T, derivativeData) / (derivativeData.shape[0] - 1)
def makeDiff(self, data):
diffData = np.mat(np.zeros((data.shape[0], data.shape[1])))
diffData[:, :-1] = data[:, :-1] - data[:, 1:]
diffData[:, -1] = data[:, -1] - data[:, 0]
return np.mat(diffData)
def fit_transform(self, data, threshold=1e-7, conponents=-1):
if conponents == -1:
conponents = data.shape[0]
self.getB(data)
U, s, V = np.linalg.svd(self._B)
count = np.argmin(s ** 0.5 < threshold)
s = np.sqrt(s[:count])
S = np.linalg.inv(np.diag(s))
whiten = np.matmul(S, U[:, :count].T)
Z = np.matmul(whiten, data.T).T
self.getZ(Z)
PT, O, P = np.linalg.svd(self._Z)
self._eigenVector = np.matmul(P[-conponents:, :], whiten)
return np.matmul(data, self._eigenVector.T)
def transfer(self, data):
return np.matmul(data, self._eigenVector.T)
```
通过以上优化,可以提高代码的效率和简洁性。
阅读全文